Menu Close

Find-x-7-x-5-x-3-x-1-x-10-dx-x-R-




Question Number 156808 by MathSh last updated on 15/Oct/21
Find:  𝛀 =∫ ((x^7  - x^5  + x^3  - x)/(1 + x^(10) )) dx  ;  x∈R
Find:Ω=x7x5+x3x1+x10dx;xR
Commented by tabata last updated on 15/Oct/21
𝛀 = ∫ ((x^7 −x^5 +x^3 −x)/(1+x^(10) ))dx    𝛀 = ∫ (−(2/5)) ((2x)/((x^2 +1))) + ((4x^7 −3x^5 +2x^3 −x)/(5(x^8 −x^6 +x^4 −x^2 +1))) dx    𝛀 = − (2/5) ln ∣ x^2 +1∣ + (1/(10)) ln ∣ x^8 −x^6 +x^4 −x^2 +1∣ + C    ⟨ M . T  ⟩
Ω=x7x5+x3x1+x10dxΩ=(25)2x(x2+1)+4x73x5+2x3x5(x8x6+x4x2+1)dxΩ=25lnx2+1+110lnx8x6+x4x2+1+CM.T

Leave a Reply

Your email address will not be published. Required fields are marked *