Menu Close

find-x-given-that-9-sin-2-x-9-cos-2-x-2-




Question Number 60814 by Forkum Michael Choungong last updated on 26/May/19
find x given that  9^(sin^2 x) +9^(cos^2 x) =2
$${find}\:{x}\:{given}\:{that} \\ $$$$\mathrm{9}^{{sin}^{\mathrm{2}} {x}} +\mathrm{9}^{{cos}^{\mathrm{2}} {x}} =\mathrm{2}\: \\ $$$$ \\ $$
Answered by $@ty@m last updated on 26/May/19
9^y +9^(1−y) =2  9^y +(9/9^y )=2  z+(9/z)=2  z^2 −2z+9=0  z=((2±(√(4−36)))/2)  z=((2±4(√2)i)/2)  z=1±2(√2)i  9^(sin^2 x) =1±2(√2)i
$$\mathrm{9}^{{y}} +\mathrm{9}^{\mathrm{1}−{y}} =\mathrm{2} \\ $$$$\mathrm{9}^{{y}} +\frac{\mathrm{9}}{\mathrm{9}^{{y}} }=\mathrm{2} \\ $$$${z}+\frac{\mathrm{9}}{{z}}=\mathrm{2} \\ $$$${z}^{\mathrm{2}} −\mathrm{2}{z}+\mathrm{9}=\mathrm{0} \\ $$$${z}=\frac{\mathrm{2}\pm\sqrt{\mathrm{4}−\mathrm{36}}}{\mathrm{2}} \\ $$$${z}=\frac{\mathrm{2}\pm\mathrm{4}\sqrt{\mathrm{2}}{i}}{\mathrm{2}} \\ $$$${z}=\mathrm{1}\pm\mathrm{2}\sqrt{\mathrm{2}}{i} \\ $$$$\mathrm{9}^{\mathrm{sin}\:^{\mathrm{2}} {x}} =\mathrm{1}\pm\mathrm{2}\sqrt{\mathrm{2}}{i} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *