Menu Close

Find-x-if-x-4-a-x-0-lt-a-lt-2-9-




Question Number 187233 by ajfour last updated on 15/Feb/23
Find x if :   x^4 +a=x    ∀ (0<a<(2/9))
Findxif:x4+a=x(0<a<29)
Commented by MJS_new last updated on 15/Feb/23
maybe off topic but it could be of interest  (x−(p^2 /2)−((√(2−p^6 ))/(2p)))(x−(p^2 /2)+((√(2−p^6 ))/(2p)))(x+(p^2 /2)−((√(2+p^6 ))/(2p))i)(x+(p^2 /2)+((√(2+p^6 ))/(2p))i)=0  (x^2 −p^2 x−((1−p^6 )/(2p^2 )))(x^2 +p^2 x+((1+p^6 )/(2p^2 )))=0  x^4 −x−((1−p^(12) )/(4p^4 ))=0
maybeofftopicbutitcouldbeofinterest(xp222p62p)(xp22+2p62p)(x+p222+p62pi)(x+p22+2+p62pi)=0(x2p2x1p62p2)(x2+p2x+1+p62p2)=0x4x1p124p4=0
Answered by ajfour last updated on 15/Feb/23
(x^2 +px+h)(x^2 −px+k)=0  p(k−h)=−1  h+k=p^2   hk=a  p^4 −(1/p^2 )=4a  p^6 −4ap^2 −1=0  D=(1/4)−((64a^3 )/(27))  D>0  ⇒  a^3 <((27)/(256))    or   0<a<(2/9)<(3/4)((1/4))^(1/3)   hence p^2  is unique  and >0  2k=p^2 −(1/p)  2h=p^2 +(1/p)  x=−(p/2)±(√((p^2 /4)−h))    =−(p/2)±(√(−(1/(2p))−(p^2 /4)))  hence  p>0  gives  x∈C  while  p<0  might yield x∈R  if   p^3  >−2  hence x could turn real only if      −2^(1/3) ≤p<0
(x2+px+h)(x2px+k)=0p(kh)=1h+k=p2hk=ap41p2=4ap64ap21=0D=1464a327D>0a3<27256or0<a<29<34(14)1/3hencep2isuniqueand>02k=p21p2h=p2+1px=p2±p24h=p2±12pp24hencep>0givesxCwhilep<0mightyieldxRifp3>2hencexcouldturnrealonlyif21/3p<0

Leave a Reply

Your email address will not be published. Required fields are marked *