Menu Close

find-x-in-x-2-5-x-2-19-




Question Number 110856 by mathdave last updated on 31/Aug/20
find x in   x^2 =5^x^2  −19
findxinx2=5x219
Answered by mr W last updated on 31/Aug/20
let t=x^2 >0  t=5^t −19  5^t =t+19  5^(t+19) =(t+19)×5^(19)   e^((t+19)ln 5) =(t+19)×5^(19)   1=e^(−(t+19)ln 5) (t+19)×5^(19)   −(t+19)ln 5e^(−(t+19)ln 5) =−((ln 5)/5^(19) )  ⇒−(t+19)ln 5=W(−((ln 5)/5^(19) ))  ⇒t=−19−(1/(ln 5))W(−((ln 5)/5^(19) ))  ⇒x=±(√(−19−(1/(ln 5))W(−((ln 5)/5^(19) ))))≈±1.3742
lett=x2>0t=5t195t=t+195t+19=(t+19)×519e(t+19)ln5=(t+19)×5191=e(t+19)ln5(t+19)×519(t+19)ln5e(t+19)ln5=ln5519(t+19)ln5=W(ln5519)t=191ln5W(ln5519)x=±191ln5W(ln5519)±1.3742
Commented by mathdave last updated on 31/Aug/20
perfect solution
perfectsolution
Answered by Dwaipayan Shikari last updated on 31/Aug/20
x^2 =5^x^2  −19  5^a =a+19  5^(a+19) =(a+19)5^(19)   5^(−(a+19)) =(1/((a+19)))5^(−19)   −(a+19)e^(log5^(−(a+19)) ) =−5^(−19)   −(a+19)log5e^(−(a+19)log5) =−log(5)5^(−19)   −(a+19)log5=W_0 (−log(5)5^(−19) )  a=−19−((W_0 (−log(5).5^(−19) ))/(log5))=I  x=(√I) =±1.3742
x2=5x2195a=a+195a+19=(a+19)5195(a+19)=1(a+19)519(a+19)elog5(a+19)=519(a+19)log5e(a+19)log5=log(5)519(a+19)log5=W0(log(5)519)a=19W0(log(5).519)log5=Ix=I=±1.3742

Leave a Reply

Your email address will not be published. Required fields are marked *