Menu Close

find-x-log-10-x-2-log-10-x-0-




Question Number 172005 by Mikenice last updated on 23/Jun/22
find x: (log_(10) x)^2 −log_(10) x=0
$${find}\:{x}:\:\left({log}_{\mathrm{10}} {x}\right)^{\mathrm{2}} −{log}_{\mathrm{10}} {x}=\mathrm{0} \\ $$
Answered by puissant last updated on 23/Jun/22
X=log_(10) x   ⇒  X^2 −X=0  ⇒ X(X−1)=0  ⇒ X=0   or  X=1  log_(10) x = ((lnx)/(ln10))=0 ⇒ lnx=0 ⇒ x=1  log_(10) x=((lnx)/(ln10))=1 ⇒ lnx=ln10 ⇒ x=10.
$${X}={log}_{\mathrm{10}} {x}\:\:\:\Rightarrow\:\:{X}^{\mathrm{2}} −{X}=\mathrm{0} \\ $$$$\Rightarrow\:{X}\left({X}−\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{X}=\mathrm{0}\:\:\:{or}\:\:{X}=\mathrm{1} \\ $$$${log}_{\mathrm{10}} {x}\:=\:\frac{{lnx}}{{ln}\mathrm{10}}=\mathrm{0}\:\Rightarrow\:{lnx}=\mathrm{0}\:\Rightarrow\:{x}=\mathrm{1} \\ $$$${log}_{\mathrm{10}} {x}=\frac{{lnx}}{{ln}\mathrm{10}}=\mathrm{1}\:\Rightarrow\:{lnx}={ln}\mathrm{10}\:\Rightarrow\:{x}=\mathrm{10}. \\ $$
Answered by Rasheed.Sindhi last updated on 23/Jun/22
find x: (log_(10) x)^2 −log_(10) x=0  log_(10) x (log_(10) x−1)=0  log_(10) x=0 ∣ log_(10) x=1     x=10^0   ∣  x=10^1   x=1, 10
$${find}\:{x}:\:\left({log}_{\mathrm{10}} {x}\right)^{\mathrm{2}} −{log}_{\mathrm{10}} {x}=\mathrm{0} \\ $$$${log}_{\mathrm{10}} {x}\:\left({log}_{\mathrm{10}} {x}−\mathrm{1}\right)=\mathrm{0} \\ $$$${log}_{\mathrm{10}} {x}=\mathrm{0}\:\mid\:{log}_{\mathrm{10}} {x}=\mathrm{1} \\ $$$$\:\:\:{x}=\mathrm{10}^{\mathrm{0}} \:\:\mid\:\:{x}=\mathrm{10}^{\mathrm{1}} \\ $$$${x}=\mathrm{1},\:\mathrm{10} \\ $$
Commented by Mikenice last updated on 23/Jun/22
yhanks sir
$${yhanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *