Menu Close

Find-x-such-that-f-x-is-minimum-f-x-c-2-x-2-c-x-c-x-2-




Question Number 164462 by ajfour last updated on 17/Jan/22
Find x, such that f(x) is minimum.  f(x)={((√(c^2 −x^2 ))/(c−x))−(c−x)}^2
Findx,suchthatf(x)isminimum.f(x)={c2x2cx(cx)}2
Commented by ajfour last updated on 17/Jan/22
did.
did.
Commented by MJS_new last updated on 17/Jan/22
no x on the rhs... please correct
noxontherhspleasecorrect
Answered by MJS_new last updated on 17/Jan/22
(√(f(x)))=0 has one solution for c∈R  ⇒  min(f(x))=0 at f(x)=0  ⇒  ((√(c^2 −x^2 ))/(c−x))−(c−x)=0  ⇔  x^3 −3cx^2 +(3c^2 +1)x−c(c^2 −1)=0  ⇒  x=c+((−c+(√((27c^2 +1)/(27)))))^(1/3) −((c+(√((27c^2 +1)/(27)))))^(1/3)
f(x)=0hasonesolutionforcRmin(f(x))=0atf(x)=0c2x2cx(cx)=0x33cx2+(3c2+1)xc(c21)=0x=c+c+27c2+1273c+27c2+1273
Answered by mr W last updated on 17/Jan/22
f(x)={((√(c^2 −x^2 ))/(c−x))−(c−x)}^2 ≥0  f(x)_(min) =0 when   ((√(c^2 −x^2 ))/(c−x))−(c−x)=0  (√(c^2 −x^2 ))=(c−x)^2   c+x=(c−x)^3   (c−x)^3 +(c−x)−2c=0  let t=c−x  t^3 +t−2c=0  t=(((√(c^2 +(1/(27))))+c))^(1/3) −(((√(c^2 +(1/(27))))−c))^(1/3)   ⇒x=c−(((√(c^2 +(1/(27))))+c))^(1/3) +(((√(c^2 +(1/(27))))−c))^(1/3)
f(x)={c2x2cx(cx)}20f(x)min=0whenc2x2cx(cx)=0c2x2=(cx)2c+x=(cx)3(cx)3+(cx)2c=0lett=cxt3+t2c=0t=c2+127+c3c2+127c3x=cc2+127+c3+c2+127c3

Leave a Reply

Your email address will not be published. Required fields are marked *