Menu Close

Find-x-such-that-f-x-is-minimum-f-x-c-2-x-2-c-x-c-x-2-




Question Number 164462 by ajfour last updated on 17/Jan/22
Find x, such that f(x) is minimum.  f(x)={((√(c^2 −x^2 ))/(c−x))−(c−x)}^2
$${Find}\:{x},\:{such}\:{that}\:{f}\left({x}\right)\:{is}\:{minimum}. \\ $$$${f}\left({x}\right)=\left\{\frac{\sqrt{{c}^{\mathrm{2}} −{x}^{\mathrm{2}} }}{{c}−{x}}−\left({c}−{x}\right)\right\}^{\mathrm{2}} \\ $$
Commented by ajfour last updated on 17/Jan/22
did.
$${did}. \\ $$
Commented by MJS_new last updated on 17/Jan/22
no x on the rhs... please correct
$$\mathrm{no}\:{x}\:\mathrm{on}\:\mathrm{the}\:\mathrm{rhs}…\:\mathrm{please}\:\mathrm{correct} \\ $$
Answered by MJS_new last updated on 17/Jan/22
(√(f(x)))=0 has one solution for c∈R  ⇒  min(f(x))=0 at f(x)=0  ⇒  ((√(c^2 −x^2 ))/(c−x))−(c−x)=0  ⇔  x^3 −3cx^2 +(3c^2 +1)x−c(c^2 −1)=0  ⇒  x=c+((−c+(√((27c^2 +1)/(27)))))^(1/3) −((c+(√((27c^2 +1)/(27)))))^(1/3)
$$\sqrt{{f}\left({x}\right)}=\mathrm{0}\:\mathrm{has}\:\mathrm{one}\:\mathrm{solution}\:\mathrm{for}\:{c}\in\mathbb{R} \\ $$$$\Rightarrow \\ $$$$\mathrm{min}\left({f}\left({x}\right)\right)=\mathrm{0}\:\mathrm{at}\:{f}\left({x}\right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\frac{\sqrt{{c}^{\mathrm{2}} −{x}^{\mathrm{2}} }}{{c}−{x}}−\left({c}−{x}\right)=\mathrm{0} \\ $$$$\Leftrightarrow \\ $$$${x}^{\mathrm{3}} −\mathrm{3}{cx}^{\mathrm{2}} +\left(\mathrm{3}{c}^{\mathrm{2}} +\mathrm{1}\right){x}−{c}\left({c}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${x}={c}+\sqrt[{\mathrm{3}}]{−{c}+\sqrt{\frac{\mathrm{27}{c}^{\mathrm{2}} +\mathrm{1}}{\mathrm{27}}}}−\sqrt[{\mathrm{3}}]{{c}+\sqrt{\frac{\mathrm{27}{c}^{\mathrm{2}} +\mathrm{1}}{\mathrm{27}}}} \\ $$
Answered by mr W last updated on 17/Jan/22
f(x)={((√(c^2 −x^2 ))/(c−x))−(c−x)}^2 ≥0  f(x)_(min) =0 when   ((√(c^2 −x^2 ))/(c−x))−(c−x)=0  (√(c^2 −x^2 ))=(c−x)^2   c+x=(c−x)^3   (c−x)^3 +(c−x)−2c=0  let t=c−x  t^3 +t−2c=0  t=(((√(c^2 +(1/(27))))+c))^(1/3) −(((√(c^2 +(1/(27))))−c))^(1/3)   ⇒x=c−(((√(c^2 +(1/(27))))+c))^(1/3) +(((√(c^2 +(1/(27))))−c))^(1/3)
$${f}\left({x}\right)=\left\{\frac{\sqrt{{c}^{\mathrm{2}} −{x}^{\mathrm{2}} }}{{c}−{x}}−\left({c}−{x}\right)\right\}^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$${f}\left({x}\right)_{{min}} =\mathrm{0}\:{when}\: \\ $$$$\frac{\sqrt{{c}^{\mathrm{2}} −{x}^{\mathrm{2}} }}{{c}−{x}}−\left({c}−{x}\right)=\mathrm{0} \\ $$$$\sqrt{{c}^{\mathrm{2}} −{x}^{\mathrm{2}} }=\left({c}−{x}\right)^{\mathrm{2}} \\ $$$${c}+{x}=\left({c}−{x}\right)^{\mathrm{3}} \\ $$$$\left({c}−{x}\right)^{\mathrm{3}} +\left({c}−{x}\right)−\mathrm{2}{c}=\mathrm{0} \\ $$$${let}\:{t}={c}−{x} \\ $$$${t}^{\mathrm{3}} +{t}−\mathrm{2}{c}=\mathrm{0} \\ $$$${t}=\sqrt[{\mathrm{3}}]{\sqrt{{c}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{27}}}+{c}}−\sqrt[{\mathrm{3}}]{\sqrt{{c}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{27}}}−{c}} \\ $$$$\Rightarrow{x}={c}−\sqrt[{\mathrm{3}}]{\sqrt{{c}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{27}}}+{c}}+\sqrt[{\mathrm{3}}]{\sqrt{{c}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{27}}}−{c}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *