Menu Close

Find-x-x-x-2x-




Question Number 60946 by Tawa1 last updated on 27/May/19
Find x:      x^x   =  2x
Findx:xx=2x
Commented by Prithwish sen last updated on 27/May/19
x=2
x=2
Commented by mr W last updated on 28/May/19
three cases for eqn.  x^x =ax:  case 1: a<1 ⇒no solution  case 2: a=1 ⇒one solution x=1  case 3: a>1 ⇒two solutions
threecasesforeqn.xx=ax:case1:a<1nosolutioncase2:a=1onesolutionx=1case3:a>1twosolutions
Commented by Tawa1 last updated on 28/May/19
Oh, that mean Lambert cannot solve it sir
Oh,thatmeanLambertcannotsolveitsir
Commented by mr W last updated on 28/May/19
Answered by meme last updated on 27/May/19
⇒e^(xln(x)) =e^(2ln(x))   ⇒xln(x)=2ln(x)  ⇒x=2
exln(x)=e2ln(x)xln(x)=2ln(x)x=2
Commented by mr W last updated on 27/May/19
⇒e^(xln(x)) =e^(ln(2x)) ≠e^(2ln (x))
exln(x)=eln(2x)e2ln(x)
Commented by Tawa1 last updated on 28/May/19
Sir mrW.  Can lambert work ?
SirmrW.Canlambertwork?
Commented by mr W last updated on 28/May/19
no, i′m afraid.
no,imafraid.
Commented by kaivan.ahmadi last updated on 28/May/19
e^(xlnx) =e^(ln(2x)) =e^(ln2+lnx) =e^(ln2) e^(lnx) ⇒  (e^(xlnx) /e^(lnx) )=e^(ln2) ⇒e^((x−1)lnx) =e^(ln2) ⇒  (x−1)lnx=ln2⇒x^(x−1) =2^1 ⇒x=2
exlnx=eln(2x)=eln2+lnx=eln2elnxexlnxelnx=eln2e(x1)lnx=eln2(x1)lnx=ln2xx1=21x=2
Commented by mr W last updated on 29/May/19
we can get x^(x−1) =2^1  directly from  x^x =2x  (x^x /x)=2  x^(x−1) =2^1   but x=2 is not the only solution.
wecangetxx1=21directlyfromxx=2xxxx=2xx1=21butx=2isnottheonlysolution.
Answered by meme last updated on 27/May/19
⇒e^(xln(x)) =e^(2ln(x))   ⇒xln(x)=2ln(x)  ⇒x=2
exln(x)=e2ln(x)xln(x)=2ln(x)x=2
Commented by JDamian last updated on 27/May/19
e^(2ln(x)) ≠2x  e^(2ln(x)) =x^2
e2ln(x)2xe2ln(x)=x2
Answered by MJS last updated on 27/May/19
f(x)=x^x −2x  f(0)=1     [because lim_(x→0) f(x)=1]  f(1)=−1  f(2)=0  f(3)=21  ⇒ there must be a zero in [0; 1], approximating  we find  x≈.346323  and of course x=2 is the other solution
f(x)=xx2xf(0)=1[becauselimx0f(x)=1]f(1)=1f(2)=0f(3)=21theremustbeazeroin[0;1],approximatingwefindx.346323andofcoursex=2istheothersolution
Commented by Tawa1 last updated on 28/May/19
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *