find-x-x-x-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 46594 by maxmathsup by imad last updated on 29/Oct/18 find∫(x+x−x−x)dx Answered by MJS last updated on 29/Oct/18 ∫x+xdx=[t=x→dx=2xdt]=∫2tt2+tdt=∫(2t+1)t2+tdt−∫t2+tdt∫(2t+1)t2+tdt=23(t2+t)32=23(x+x)32−∫t2+tdt=−12∫(2t+1)2−1dt=[u=2t+1→dt=12du]=−14∫u2−1du=[v=arccoshu→du=sinhvdv]=−14∫sinh2vdv=18∫dv−18∫cosh2vdv==18v−116sinh2v=18arccoshu−116sinh(2arccoshu)==18arccosh(2t+1)−116sinh(2arccosh(2t+1))==18arccosh(2x+1)−116sinh(2arccosh(2x+1))∫x+xdx=23(x+x)32+18arccosh(2x+1)−116sinh(2arccosh(2x+1))+Csimilar−∫x−xdx=−23(x−x)32+18arccosh(2x−1)−116sinh(2arccosh(2x−1))+C Commented by maxmathsup by imad last updated on 29/Oct/18 goodworkisdonethankyousirMJS. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-112128Next Next post: Question-177665 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.