Menu Close

find-x-x-x-x-dx-




Question Number 46594 by maxmathsup by imad last updated on 29/Oct/18
find ∫ ((√(x+(√x)))−(√(x−(√x))))dx
find(x+xxx)dx
Answered by MJS last updated on 29/Oct/18
∫(√(x+(√x)))dx=       [t=(√x) → dx=2(√x)dt]  =∫2t(√(t^2 +t))dt=∫(2t+1)(√(t^2 +t))dt−∫(√(t^2 +t))dt         ∫(2t+1)(√(t^2 +t))dt=(2/3)(t^2 +t)^(3/2) =(2/3)(x+(√x))^(3/2)          −∫(√(t^2 +t))dt=−(1/2)∫(√((2t+1)^2 −1))dt=            [u=2t+1 → dt=(1/2)du]       =−(1/4)∫(√(u^2 −1))du=            [v=arccosh u → du=sinh v dv]       =−(1/4)∫sinh^2  v dv=(1/8)∫dv−(1/8)∫cosh 2v dv=       =(1/8)v−(1/(16))sinh 2v =(1/8)arccosh u −(1/(16))sinh (2arccosh u)=       =(1/8)arccosh (2t+1) −(1/(16))sinh (2arccosh (2t+1))=       =(1/8)arccosh (2(√x)+1) −(1/(16))sinh (2arccosh (2(√x)+1))    ∫(√(x+(√x)))dx=(2/3)(x+(√x))^(3/2) +(1/8)arccosh (2(√x)+1) −(1/(16))sinh (2arccosh (2(√x)+1)) +C  similar  −∫(√(x−(√x)))dx=−(2/3)(x−(√x))^(3/2) +(1/8)arccosh (2(√x)−1) −(1/(16))sinh (2arccosh (2(√x)−1)) +C
x+xdx=[t=xdx=2xdt]=2tt2+tdt=(2t+1)t2+tdtt2+tdt(2t+1)t2+tdt=23(t2+t)32=23(x+x)32t2+tdt=12(2t+1)21dt=[u=2t+1dt=12du]=14u21du=[v=arccoshudu=sinhvdv]=14sinh2vdv=18dv18cosh2vdv==18v116sinh2v=18arccoshu116sinh(2arccoshu)==18arccosh(2t+1)116sinh(2arccosh(2t+1))==18arccosh(2x+1)116sinh(2arccosh(2x+1))x+xdx=23(x+x)32+18arccosh(2x+1)116sinh(2arccosh(2x+1))+Csimilarxxdx=23(xx)32+18arccosh(2x1)116sinh(2arccosh(2x1))+C
Commented by maxmathsup by imad last updated on 29/Oct/18
good work is done thank you sirMJS.
goodworkisdonethankyousirMJS.

Leave a Reply

Your email address will not be published. Required fields are marked *