Menu Close

find-x-y-from-Z-wich-verify-y-2-x-x-1-x-7-x-8-




Question Number 50369 by prof Abdo imad last updated on 16/Dec/18
find x ,y from Z  wich verify  y^2 =x(x+1)(x+7)(x+8)
$${find}\:{x}\:,{y}\:{from}\:{Z}\:\:{wich}\:{verify} \\ $$$${y}^{\mathrm{2}} ={x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{7}\right)\left({x}+\mathrm{8}\right) \\ $$
Answered by mr W last updated on 16/Dec/18
let t=x+4  y^2 =(t−4)(t−3)(t+3)(t+4)  y^2 =(t^2 −16)(t^2 −9)  let s=t^2   y^2 =(s−16)(s−9)  s^2 −25s+144−y^2 =0  s=((25±(√(25^2 −4(144−y^2 ))))/2)  s=((25±(√(4y^2 +49)))/2)  4y^2 +49=(2n+1)^2   49=(2n+1)^2 −(2y)^2 =(2n+1−2y)(2n+1+2y)  2n+1−2y=1⇒n=y  2n+1+2y=49⇒4y=48⇒y=12  with y=12:  ⇒s=25 or 0  ⇒t=5 or 0  ⇒x=1 or −4    solutions are:  x=−4, y=12  x=1, y=12
$${let}\:{t}={x}+\mathrm{4} \\ $$$${y}^{\mathrm{2}} =\left({t}−\mathrm{4}\right)\left({t}−\mathrm{3}\right)\left({t}+\mathrm{3}\right)\left({t}+\mathrm{4}\right) \\ $$$${y}^{\mathrm{2}} =\left({t}^{\mathrm{2}} −\mathrm{16}\right)\left({t}^{\mathrm{2}} −\mathrm{9}\right) \\ $$$${let}\:{s}={t}^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} =\left({s}−\mathrm{16}\right)\left({s}−\mathrm{9}\right) \\ $$$${s}^{\mathrm{2}} −\mathrm{25}{s}+\mathrm{144}−{y}^{\mathrm{2}} =\mathrm{0} \\ $$$${s}=\frac{\mathrm{25}\pm\sqrt{\mathrm{25}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{144}−{y}^{\mathrm{2}} \right)}}{\mathrm{2}} \\ $$$${s}=\frac{\mathrm{25}\pm\sqrt{\mathrm{4}{y}^{\mathrm{2}} +\mathrm{49}}}{\mathrm{2}} \\ $$$$\mathrm{4}{y}^{\mathrm{2}} +\mathrm{49}=\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\mathrm{49}=\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} −\left(\mathrm{2}{y}\right)^{\mathrm{2}} =\left(\mathrm{2}{n}+\mathrm{1}−\mathrm{2}{y}\right)\left(\mathrm{2}{n}+\mathrm{1}+\mathrm{2}{y}\right) \\ $$$$\mathrm{2}{n}+\mathrm{1}−\mathrm{2}{y}=\mathrm{1}\Rightarrow{n}={y} \\ $$$$\mathrm{2}{n}+\mathrm{1}+\mathrm{2}{y}=\mathrm{49}\Rightarrow\mathrm{4}{y}=\mathrm{48}\Rightarrow{y}=\mathrm{12} \\ $$$${with}\:{y}=\mathrm{12}: \\ $$$$\Rightarrow{s}=\mathrm{25}\:{or}\:\mathrm{0} \\ $$$$\Rightarrow{t}=\mathrm{5}\:{or}\:\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{1}\:{or}\:−\mathrm{4} \\ $$$$ \\ $$$${solutions}\:{are}: \\ $$$${x}=−\mathrm{4},\:{y}=\mathrm{12} \\ $$$${x}=\mathrm{1},\:{y}=\mathrm{12} \\ $$
Commented by maxmathsup by imad last updated on 16/Dec/18
thank you sir for this hardwork.
$${thank}\:{you}\:{sir}\:{for}\:{this}\:{hardwork}. \\ $$
Commented by Necxx last updated on 17/Dec/18
please why did you equate 4y^2 +49=(2n+1)^2 ???
$${please}\:{why}\:{did}\:{you}\:{equate}\:\mathrm{4}{y}^{\mathrm{2}} +\mathrm{49}=\left(\mathrm{2}\boldsymbol{{n}}+\mathrm{1}\right)^{\mathrm{2}} ??? \\ $$
Commented by mr W last updated on 17/Dec/18
s=((25±(√(4y^2 +49)))/2)  such that s is integer,  (√(4y^2 +49)) must be an odd integer, say  2n+1, therefore  4y^2 +49=(2n+1)^2
$${s}=\frac{\mathrm{25}\pm\sqrt{\mathrm{4}{y}^{\mathrm{2}} +\mathrm{49}}}{\mathrm{2}} \\ $$$${such}\:{that}\:{s}\:{is}\:{integer}, \\ $$$$\sqrt{\mathrm{4}{y}^{\mathrm{2}} +\mathrm{49}}\:{must}\:{be}\:{an}\:{odd}\:{integer},\:{say} \\ $$$$\mathrm{2}{n}+\mathrm{1},\:{therefore} \\ $$$$\mathrm{4}{y}^{\mathrm{2}} +\mathrm{49}=\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *