Menu Close

find-x-y-in-R-x-yi-3-1-15-i-5-3-i-




Question Number 59588 by aliesam last updated on 12/May/19
find x,y in R  (x+yi)^3 =((1+(√(15)) i)/( (√5) − (√3) i))
findx,yinR(x+yi)3=1+15i53i
Commented by maxmathsup by imad last updated on 12/May/19
⇒x+iy =^3 (√((1+(√(15))i)/( (√5)−(√3)i)))   let solve Z^3  =((1+(√(15))i)/( (√5)−(√3)i))  we have   ∣1+(√(15))i∣ =(√(1+15))=4   and   ∣(√5)−(√3)i∣ =(√(5 +3))=2(√(2 ))⇒∣((1+(√(15))i)/( (√5)−(√3)i))∣=(4/(2(√2))) =(√(2 ))  1+(√(15))i =4{(1/4)+((√(15))/4)i} =r e^(iθ)  ⇒r=4 and cosθ=(1/4) and sinθ =((√(15))/4) ⇒  tanθ =(√(15)) ⇒θ =arctan((√(15))) also (√5)−(√3)i =2(√2){((√5)/(2(√2))) −((√3)/(2(√2)))i}=r^′  e^(iθ′)  ⇒  r^′  =2(√2) and  θ^′  =arctan(((−(√3))/( (√5)))) ⇒arg(((1+(√(15))i)/( (√5)−(√3)i)))≡ arctan((√(15))) +arctan(((√3)/( (√5))))[2π] ⇒   ⇒((1+(√(15))i)/( (√5)−(√3)i)) =(√2) e^(i(arctan((√(15)))+arctan(((√3)/( (√5))))))  =Z^3  ⇒  Z =^6 (√2)e^((1/3)(arctan((√(15)))+arctan(((√3)/( (√5)))))i)   =^6 (√2){cos((1/3)(arctan((√(15)))+arctan(((√3)/( (√5))))))+i  sin((1/3)(arctan((√(15)))+arctan(((√3)/( (√5))))) ⇒  x =^6 (√2)cos((1/3)(arctan((√(15)))+arctan(((√3)/( (√5)))))) and  y =^6 (√2)sin((1/3)(arctan((√(15))) +arctan(((√3)/( (√5)))))) .
x+iy=31+15i53iletsolveZ3=1+15i53iwehave1+15i=1+15=4and53i=5+3=22⇒∣1+15i53i∣=422=21+15i=4{14+154i}=reiθr=4andcosθ=14andsinθ=154tanθ=15θ=arctan(15)also53i=22{522322i}=reiθr=22andθ=arctan(35)arg(1+15i53i)arctan(15)+arctan(35)[2π]1+15i53i=2ei(arctan(15)+arctan(35))=Z3Z=62e13(arctan(15)+arctan(35))i=62{cos(13(arctan(15)+arctan(35)))+isin(13(arctan(15)+arctan(35))x=62cos(13(arctan(15)+arctan(35)))andy=62sin(13(arctan(15)+arctan(35))).
Answered by tanmay last updated on 12/May/19
(((1+(√(15)) i)((√5) +(√3) i))/8)  (((2+2(√(15)) i)((√5) +(√3) i))/(16))  (((5−3+2(√(15)) i)((√5) +(√3) i))/(16))  ((((√5) +(√3) i)^2 ((√5) +(√3) i))/(16))  ((((√5) +(√3) i)^3 )/((2^(4/3) )^3 ))  so x=((√5)/2^(4/3) )   and y=((√3)/2^(4/3) )
(1+15i)(5+3i)8(2+215i)(5+3i)16(53+215i)(5+3i)16(5+3i)2(5+3i)16(5+3i)3(243)3sox=5243andy=3243
Commented by MJS last updated on 12/May/19
your solution is z_1 =(((√5)(4)^(1/3) )/4)+(((√3)(4)^(1/3) )/4)i but there are  2 more: z_2 =z_1 (−(1/2)−((√3)/2)i)=((4)^(1/3) /8)(3−(√5))−(((√3)(4)^(1/3) )/8)(1+(√5))i  and z_3 =z_1 (−(1/2)+((√3)/2)i)=−((4)^(1/3) /8)(3+(√5))−(((√3)(4)^(1/3) )/8)(1−(√5))i
yoursolutionisz1=5434+3434ibutthereare2more:z2=z1(1232i)=438(35)3438(1+5)iandz3=z1(12+32i)=438(3+5)3438(15)i
Commented by tanmay last updated on 12/May/19
thank yousir...
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *