Question Number 59588 by aliesam last updated on 12/May/19

Commented by maxmathsup by imad last updated on 12/May/19
![⇒x+iy =^3 (√((1+(√(15))i)/( (√5)−(√3)i))) let solve Z^3 =((1+(√(15))i)/( (√5)−(√3)i)) we have ∣1+(√(15))i∣ =(√(1+15))=4 and ∣(√5)−(√3)i∣ =(√(5 +3))=2(√(2 ))⇒∣((1+(√(15))i)/( (√5)−(√3)i))∣=(4/(2(√2))) =(√(2 )) 1+(√(15))i =4{(1/4)+((√(15))/4)i} =r e^(iθ) ⇒r=4 and cosθ=(1/4) and sinθ =((√(15))/4) ⇒ tanθ =(√(15)) ⇒θ =arctan((√(15))) also (√5)−(√3)i =2(√2){((√5)/(2(√2))) −((√3)/(2(√2)))i}=r^′ e^(iθ′) ⇒ r^′ =2(√2) and θ^′ =arctan(((−(√3))/( (√5)))) ⇒arg(((1+(√(15))i)/( (√5)−(√3)i)))≡ arctan((√(15))) +arctan(((√3)/( (√5))))[2π] ⇒ ⇒((1+(√(15))i)/( (√5)−(√3)i)) =(√2) e^(i(arctan((√(15)))+arctan(((√3)/( (√5)))))) =Z^3 ⇒ Z =^6 (√2)e^((1/3)(arctan((√(15)))+arctan(((√3)/( (√5)))))i) =^6 (√2){cos((1/3)(arctan((√(15)))+arctan(((√3)/( (√5))))))+i sin((1/3)(arctan((√(15)))+arctan(((√3)/( (√5))))) ⇒ x =^6 (√2)cos((1/3)(arctan((√(15)))+arctan(((√3)/( (√5)))))) and y =^6 (√2)sin((1/3)(arctan((√(15))) +arctan(((√3)/( (√5)))))) .](https://www.tinkutara.com/question/Q59606.png)
Answered by tanmay last updated on 12/May/19

Commented by MJS last updated on 12/May/19

Commented by tanmay last updated on 12/May/19
