Menu Close

Find-x-y-z-0-such-that-x-y-z-sinx-siny-sinz-x-2-y-2-z-2-sin-2-x-sin-2-y-sin-2-z-x-3-y-3-z-3-sin-3-x-sin-3-y-sin-3-z-




Question Number 156452 by MathSh last updated on 11/Oct/21
Find  x;y;z≥0  such that:   { ((x-y-z = sinx-siny-sinz)),((x^2 -y^2 -z^2  = sin^2 x-sin^2 y-sin^2 z)),((x^3 -y^3 -z^3  = sin^3 x-sin^3 y-sin^3 z)) :}
$$\mathrm{Find}\:\:\mathrm{x};\mathrm{y};\mathrm{z}\geqslant\mathrm{0}\:\:\mathrm{such}\:\mathrm{that}: \\ $$$$\begin{cases}{\mathrm{x}-\mathrm{y}-\mathrm{z}\:=\:\mathrm{sin}\boldsymbol{\mathrm{x}}-\mathrm{sin}\boldsymbol{\mathrm{y}}-\mathrm{sin}\boldsymbol{\mathrm{z}}}\\{\mathrm{x}^{\mathrm{2}} -\mathrm{y}^{\mathrm{2}} -\mathrm{z}^{\mathrm{2}} \:=\:\mathrm{sin}^{\mathrm{2}} \boldsymbol{\mathrm{x}}-\mathrm{sin}^{\mathrm{2}} \boldsymbol{\mathrm{y}}-\mathrm{sin}^{\mathrm{2}} \boldsymbol{\mathrm{z}}}\\{\mathrm{x}^{\mathrm{3}} -\mathrm{y}^{\mathrm{3}} -\mathrm{z}^{\mathrm{3}} \:=\:\mathrm{sin}^{\mathrm{3}} \boldsymbol{\mathrm{x}}-\mathrm{sin}^{\mathrm{3}} \boldsymbol{\mathrm{y}}-\mathrm{sin}^{\mathrm{3}} \boldsymbol{\mathrm{z}}}\end{cases} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *