Menu Close

Find-Z-4-1-Hence-show-that-1-w-w-2-w-3-0-




Question Number 155572 by peter frank last updated on 02/Oct/21
Find Z^4 =1.  Hence show that 1+w+w^2 +w^3 =0
FindZ4=1.Henceshowthat1+w+w2+w3=0
Answered by puissant last updated on 02/Oct/21
z^4 =1  ⇒  z=e^(i((2kπ)/4))  ;  k∈[∣0;3∣]..   → k=0 ⇒ z=1..  → k=1 ⇒ z=e^(i(π/2)) = i..  → k=2 ⇒ z=e^(i((4π)/4)) = e^(iπ) =−1..  → k=3 ⇒z=e^(i((3π)/2)) = −i..           ∵ z ∈ {−1 ; −i ; i ; 1 }..       ★... 1+w+w^2 +w^3 =((1−w^4 )/(1−w))= ((w^4 −1)/(w−1))  w is a solution, we have w^4 = 1  ⇒ w^4 −1=0   ⇒((w^4 −1)/(w−1))=0 ⇒ 1+w+w^2 +w^3 =0..
z4=1z=ei2kπ4;k[0;3]..k=0z=1..k=1z=eiπ2=i..k=2z=ei4π4=eiπ=1..k=3z=ei3π2=i..z{1;i;i;1}..1+w+w2+w3=1w41w=w41w1wisasolution,wehavew4=1w41=0w41w1=01+w+w2+w3=0..
Commented by peter frank last updated on 02/Oct/21
great sir .thanks
greatsir.thanks
Answered by Rasheed.Sindhi last updated on 02/Oct/21
z^4 −1=0  (z−1)(z+1)(z^2 +1)=0  z=1,z=−1,z=±i  ω=i (say)  ω^2 =i^2 =−1  ω^3 =i^3 =i^2 .i=−i  ω^4 =i^4 =i^2 .i^2 =−1.−1=1  1+ω+ω^2 +ω^3 =1+i+(−1)+(−i)=0
z41=0(z1)(z+1)(z2+1)=0z=1,z=1,z=±iω=i(say)ω2=i2=1ω3=i3=i2.i=iω4=i4=i2.i2=1.1=11+ω+ω2+ω3=1+i+(1)+(i)=0
Commented by peter frank last updated on 02/Oct/21
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *