Menu Close

fint-f-t-0-1-ln-1-tx-2-x-2-dx-




Question Number 55280 by Abdo msup. last updated on 20/Feb/19
fint f(t)=∫_0 ^1  ((ln(1+tx^2 ))/x^2 )dx .
fintf(t)=01ln(1+tx2)x2dx.
Commented by maxmathsup by imad last updated on 20/Feb/19
we have f^′ (t) =∫_0 ^1   (∂/∂t)(((ln(1+tx^2 ))/x^2 ))dx =∫_0 ^1  (1/x^2 ) (x^2 /(1+tx^2 ))dx  = ∫_0 ^1   (dx/(1+tx^2 ))   so  if t≥0  we get f^′ (t)=_((√t)x =u)   ∫_0 ^(√t)     (du/( (√t)(1+u^2 )))  =(1/( (√t)))[arctan(u)]_0 ^(√t)  =((arctan((√t)))/( (√t))) ⇒f(t) =∫_0 ^t   ((arctan((√u)))/( (√u))) du +λ  λ=f(0)=0 ⇒f(t) =∫_0 ^t   ((arctan((√u)))/( (√u))) du =_((√u)=x)     ∫_0 ^(√t)  ((arctanx)/x) (2x)dx  =2 ∫_0 ^(√t) arctanx dx  by parts f(t)=2{ [xarctanx]_0 ^(√t)  −∫_0 ^(√t)  (x/(1+x^2 ))dx}  =2{(√t)arctan((√t)) −[(1/2)ln(1+x^2 )]_0 ^(√t) ⇒f(t)=2(√t)arctan((√t))−ln(1+t) .  it t<0  we get f^′ (t) =∫_0 ^1    (dx/(1−(−t)x^2 )) =∫_0 ^1   (dx/((1−(√(−t))x)(1+(√(−t))x)))  =(1/2)∫_0 ^1 ( (1/(1−(√(−t))x)) +(1/(1+(√(−t))x)))dx =(1/(2(√(−t)))) { ∫_0 ^1   ((√(−t))/(1−(√(−t))x)) +∫_0 ^1  ((√(−t))/(1+(√(−t))x))dx}  =(1/(2(√(−t))))[ln∣1+(√(−t))x∣−ln∣1−(√(−t))x∣]_(x=0) ^(x=1)   =(1/(2(√(−t)))) ln∣((1+(√(−t)))/(1−(√(−t))))∣ ⇒ f(t) =∫(1/(2(√(−t))))ln∣((1+(√(−t)))/(1−(√(−t))))∣dt +c  =_((√(−t))=x)   ∫   (1/(2x))ln∣((1+x)/(1−x))∣(−2x)dx +c = c−∫ ln∣1+x∣dx+∫ln∣1−x∣dx
wehavef(t)=01t(ln(1+tx2)x2)dx=011x2x21+tx2dx=01dx1+tx2soift0wegetf(t)=tx=u0tdut(1+u2)=1t[arctan(u)]0t=arctan(t)tf(t)=0tarctan(u)udu+λλ=f(0)=0f(t)=0tarctan(u)udu=u=x0tarctanxx(2x)dx=20tarctanxdxbypartsf(t)=2{[xarctanx]0t0tx1+x2dx}=2{tarctan(t)[12ln(1+x2)]0tf(t)=2tarctan(t)ln(1+t).itt<0wegetf(t)=01dx1(t)x2=01dx(1tx)(1+tx)=1201(11tx+11+tx)dx=12t{01t1tx+01t1+txdx}=12t[ln1+txln1tx]x=0x=1=12tln1+t1tf(t)=12tln1+t1tdt+c=t=x12xln1+x1x(2x)dx+c=cln1+xdx+ln1xdx
Answered by tm888 last updated on 20/Feb/19

Leave a Reply

Your email address will not be published. Required fields are marked *