fint-f-t-0-1-ln-1-tx-2-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 55280 by Abdo msup. last updated on 20/Feb/19 fintf(t)=∫01ln(1+tx2)x2dx. Commented by maxmathsup by imad last updated on 20/Feb/19 wehavef′(t)=∫01∂∂t(ln(1+tx2)x2)dx=∫011x2x21+tx2dx=∫01dx1+tx2soift⩾0wegetf′(t)=tx=u∫0tdut(1+u2)=1t[arctan(u)]0t=arctan(t)t⇒f(t)=∫0tarctan(u)udu+λλ=f(0)=0⇒f(t)=∫0tarctan(u)udu=u=x∫0tarctanxx(2x)dx=2∫0tarctanxdxbypartsf(t)=2{[xarctanx]0t−∫0tx1+x2dx}=2{tarctan(t)−[12ln(1+x2)]0t⇒f(t)=2tarctan(t)−ln(1+t).itt<0wegetf′(t)=∫01dx1−(−t)x2=∫01dx(1−−tx)(1+−tx)=12∫01(11−−tx+11+−tx)dx=12−t{∫01−t1−−tx+∫01−t1+−txdx}=12−t[ln∣1+−tx∣−ln∣1−−tx∣]x=0x=1=12−tln∣1+−t1−−t∣⇒f(t)=∫12−tln∣1+−t1−−t∣dt+c=−t=x∫12xln∣1+x1−x∣(−2x)dx+c=c−∫ln∣1+x∣dx+∫ln∣1−x∣dx Answered by tm888 last updated on 20/Feb/19 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-L-e-x-ln-1-x-2-with-L-mean-laplace-transform-Next Next post: calculatef-a-1-a-x-2-arctan-a-x-dx-2-calculate-1-1-2-x-2-arctan-2-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.