Menu Close

fnd-dx-1-cos-tx-




Question Number 46853 by maxmathsup by imad last updated on 01/Nov/18
fnd  ∫      (dx/(1+cos(tx)))
$${fnd}\:\:\int\:\:\:\:\:\:\frac{{dx}}{\mathrm{1}+{cos}\left({tx}\right)} \\ $$
Commented by maxmathsup by imad last updated on 01/Nov/18
let A(t) =∫  (dx/(1+cos(tx))) ⇒A(t) =_(tx=u)    ∫   (1/(1+cosu)) (du/t)  =(1/t) ∫    (du/(1+cosu)) =_(tan((u/2))=α)   (1/t) ∫   (1/(1+((1−α^2 )/(1+α^2 )))) ((2dα)/(1+α^2 ))  =(1/t) ∫  ((2dα)/(1+α^2  +1−α^2 )) =(1/t) ∫ dα =(α/t) +c =((tan((u/2)))/t) +c  =((tan(((tx)/2)))/t) +c  .
$${let}\:{A}\left({t}\right)\:=\int\:\:\frac{{dx}}{\mathrm{1}+{cos}\left({tx}\right)}\:\Rightarrow{A}\left({t}\right)\:=_{{tx}={u}} \:\:\:\int\:\:\:\frac{\mathrm{1}}{\mathrm{1}+{cosu}}\:\frac{{du}}{{t}} \\ $$$$=\frac{\mathrm{1}}{{t}}\:\int\:\:\:\:\frac{{du}}{\mathrm{1}+{cosu}}\:=_{{tan}\left(\frac{{u}}{\mathrm{2}}\right)=\alpha} \:\:\frac{\mathrm{1}}{{t}}\:\int\:\:\:\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}−\alpha^{\mathrm{2}} }{\mathrm{1}+\alpha^{\mathrm{2}} }}\:\frac{\mathrm{2}{d}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{{t}}\:\int\:\:\frac{\mathrm{2}{d}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} \:+\mathrm{1}−\alpha^{\mathrm{2}} }\:=\frac{\mathrm{1}}{{t}}\:\int\:{d}\alpha\:=\frac{\alpha}{{t}}\:+{c}\:=\frac{{tan}\left(\frac{{u}}{\mathrm{2}}\right)}{{t}}\:+{c} \\ $$$$=\frac{{tan}\left(\frac{{tx}}{\mathrm{2}}\right)}{{t}}\:+{c}\:\:. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Nov/18
∫((1−cos(tx))/(sin^2 (tx)))dx  ∫cosec^2 (tx)−cot(tx)cosec(tx)   dx  ((−cot(tx))/t)+((cosec(tx))/t)+c
$$\int\frac{\mathrm{1}−{cos}\left({tx}\right)}{{sin}^{\mathrm{2}} \left({tx}\right)}{dx} \\ $$$$\int{cosec}^{\mathrm{2}} \left({tx}\right)−{cot}\left({tx}\right){cosec}\left({tx}\right)\:\:\:{dx} \\ $$$$\frac{−{cot}\left({tx}\right)}{{t}}+\frac{{cosec}\left({tx}\right)}{{t}}+{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *