fnd-lim-n-2n-n-n-n-1-n- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 107289 by mathmax by abdo last updated on 09/Aug/20 fndlimn→+∞((2n)!nnn!)1n Answered by Ar Brandon last updated on 13/Aug/20 An=((2n)!nnn!)1nlnAn=ln((2n)!nnn!)1n=1n[ln(2n)!−ln(nn)−ln(n!)]=1n[ln∏2n−1k=0(2n−k)−ln∏n−1k=0(n−k)]−ln(n)=1n[∑2n−1k=0ln(2n−k)−∑n−1k=0ln(n−k)]−ln(n)=1n[2n⋅ln(n)+∑2n−1k=0ln(2−kn)−n⋅ln(n)−∑n−1k=0ln(1−kn)]−ln(n)Double subscripts: use braces to clarifyDouble subscripts: use braces to clarify=∫02ln(t1)dt1−∫01ln(t2)dt2=[tlnt−t]12=2ln2−1Double subscripts: use braces to clarifyDouble subscripts: use braces to clarify Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-172821Next Next post: let-u-n-1-n-2-k-1-n-n-2-k-2-1-n-determine-lim-n-u-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.