Menu Close

fnd-lim-n-2n-n-n-n-1-n-




Question Number 107289 by mathmax by abdo last updated on 09/Aug/20
fnd lim_(n→+∞)   ((((2n)!)/(n^n  n!)))^(1/n)
fndlimn+((2n)!nnn!)1n
Answered by Ar Brandon last updated on 13/Aug/20
A_n = ((((2n)!)/(n^n  n!)))^(1/n)   lnA_n =ln ((((2n)!)/(n^n  n!)))^(1/n) =(1/n)[ln(2n)!−ln(n^n )−ln(n!)]              =(1/n)[lnΠ_(k=0) ^(2n−1) (2n−k)−lnΠ_(k=0) ^(n−1) (n−k)]−ln(n)              =(1/n)[Σ_(k=0) ^(2n−1) ln(2n−k)−Σ_(k=0) ^(n−1) ln(n−k)]−ln(n)              =(1/n)[2n∙ln(n)+Σ_(k=0) ^(2n−1) ln(2−(k/n))−n∙ln(n)−Σ_(k=0) ^(n−1) ln(1−(k/n))]−ln(n)  lim_(n→∞) lnA_n =∫_0 ^2 ln(2−x)dx−∫_0 ^1 ln(1−x)dx                       =∫_0 ^2 ln(t_1 )dt_1 −∫_0 ^1 ln(t_2 )dt_2 =[tlnt−t]_1 ^2 =2ln2−1  lim_(n→∞) A_n =e^(2ln2−1) =(4/e)
An=((2n)!nnn!)1nlnAn=ln((2n)!nnn!)1n=1n[ln(2n)!ln(nn)ln(n!)]=1n[ln2n1k=0(2nk)lnn1k=0(nk)]ln(n)=1n[2n1k=0ln(2nk)n1k=0ln(nk)]ln(n)=1n[2nln(n)+2n1k=0ln(2kn)nln(n)n1k=0ln(1kn)]ln(n)Double subscripts: use braces to clarify=02ln(t1)dt101ln(t2)dt2=[tlntt]12=2ln21Double subscripts: use braces to clarify

Leave a Reply

Your email address will not be published. Required fields are marked *