fond-lim-n-n-a-ln-1-e-n-e-n-with-a-gt-0- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 35833 by abdo mathsup 649 cc last updated on 24/May/18 fondlimn→+∞na{ln(1+e−n)−e−n}witha>0 Commented by prof Abdo imad last updated on 25/May/18 wehavefor∣x∣<1ln′(1+x)=11+x=∑n=0∞(−1)nxn⇒ln(1+x)=∑n=0∞(−1)nxn+1n+1=∑n=1∞(−1)n−1xnnsoln(1+x)=x−x22+o(x3)(x→0)⇒ln(1+e−n)=e−n−e−2n2+o(e−3n)(n→+∞)na{ln(1+e−n)−e−n}∼−12nae−2n(n→+∞)butlimn→+∞nae−2n=limn→+∞ealn(n)−2n=limn→+∞en{aln(n)n−2}=limn→+∞e−2n=0soforalla>0limn→+∞na{ln(1+e−n)−e−n}=0 Answered by tanmay.chaudhury50@gmail.com last updated on 24/May/18 whenn→∞thene−n→0sogivenlimit(∞×0)form=limn→∞{ln(1+e−n)−e−n}1na(00)formusinglhospitsl=limn→∞×{1(1+e−n)×e−n×−1}−{e−n×(−1)}−a×n−a−1=limn→∞×{−e−n1+e−n}+e−n−a×n−a−1=limn→∞×{−e−n+e−n+e−2n(1+e−n)×(−a×n−a−1)=(−1a)×limn→∞e−2n1+e−n×na+1=(−1a)×limn→∞1e2n+en×na+1=(−1a)×limn→∞1en+1×na+1en=(−a)×limn→∞×1e2n+en1na+1contd Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-the-value-of-f-a-a-dx-x-2-3-2-R-Next Next post: given-that-is-prime-proof-that-p-is-irrational- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.