Menu Close

fond-lim-n-n-a-ln-1-e-n-e-n-with-a-gt-0-




Question Number 35833 by abdo mathsup 649 cc last updated on 24/May/18
fond lim_(n→+∞)   n^a   {ln(1+e^(−n) ) −e^(−n) } with a>0
fondlimn+na{ln(1+en)en}witha>0
Commented by prof Abdo imad last updated on 25/May/18
we have for ∣x∣<1  ln^′ (1+x) =(1/(1+x)) =Σ_(n=0) ^∞ (−1)^n x^n   ⇒ ln(1+x) =Σ_(n=0) ^∞  (((−1)^n x^(n+1) )/(n+1)) =Σ_(n=1) ^∞  (((−1)^(n−1)  x^n )/n)  so  ln(1+x) = x  −(x^2 /2) +o(x^3 )(x→0)⇒  ln(1 +e^(−n) ) = e^(−n)  − (e^(−2n) /2)  +o(e^(−3n) )(n→+∞)  n^a { ln(1+e^(−n) )−e^(−n) } ∼ −(1/2)n^a  e^(−2n)  (n→+∞)  but lim_(n→+∞)  n^a  e^(−2n)  =lim_(n→+∞) e^(aln(n)−2n)   =lim_(n→+∞)   e^(n{ a((ln(n))/n) −2})  = lim_(n→+∞)  e^(−2n)  =0 so  for all a>0 lim_(n→+∞) n^a {ln(1+e^(−n) ) −e^(−n) } =0
wehaveforx∣<1ln(1+x)=11+x=n=0(1)nxnln(1+x)=n=0(1)nxn+1n+1=n=1(1)n1xnnsoln(1+x)=xx22+o(x3)(x0)ln(1+en)=ene2n2+o(e3n)(n+)na{ln(1+en)en}12nae2n(n+)butlimn+nae2n=limn+ealn(n)2n=limn+en{aln(n)n2}=limn+e2n=0soforalla>0limn+na{ln(1+en)en}=0
Answered by tanmay.chaudhury50@gmail.com last updated on 24/May/18
when n→∞  then e^(−n) →0  so given limit (∞×0) form  =((lim)/(n→∞))(({ln(1+e^(−n) )−e^(−n) })/(1/n^a )) ((0/0)) form  using lhospitsl  =((lim)/(n→∞))×(({(1/((1+e^(−n) )))×e^(−n) ×−1}−{e^(−n) ×(−1)})/(−a×n^(−a−1) ))  =((lim)/(n→∞))×(({((−e^(−n) )/(1+e^(−n)  ))}+e^(−n) )/(−a×n^(−a−1) ))  =((lim)/(n→∞))×(({−e^(−n) +e^(−n) +e^(−2n) )/((1+e^(−n) )×(−a×n^(−a−1) )))  =(((−1)/a))×((lim)/(n→∞))(e^(−2n) /(1+e^(−n) ))×n^(a+1)   =(((−1)/a))×((lim)/(n→∞))(1/(e^(2n) +e^n  ))×n^(a+1)   =(((−1)/a))×((lim)/(n→∞))(1/(e^n +1))×(n^(a+1) /e^n )  =((−/a))×((lim)/(n→∞))×((1/(e^(2n) +e^n ))/(1/n^(a+1) ))  contd
whennthenen0sogivenlimit(×0)form=limn{ln(1+en)en}1na(00)formusinglhospitsl=limn×{1(1+en)×en×1}{en×(1)}a×na1=limn×{en1+en}+ena×na1=limn×{en+en+e2n(1+en)×(a×na1)=(1a)×limne2n1+en×na+1=(1a)×limn1e2n+en×na+1=(1a)×limn1en+1×na+1en=(a)×limn×1e2n+en1na+1contd

Leave a Reply

Your email address will not be published. Required fields are marked *