fond-the-value-of-0-2pi-dt-a-cost-2-with-a-gt-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 37350 by math khazana by abdo last updated on 12/Jun/18 fondthevalueof∫02πdt(a+cost)2witha>1. Commented by math khazana by abdo last updated on 12/Jun/18 I=∫0πdt(a+cost)2+∫π2πdt(a+cost)2=K+Hchangementtan(t2)=xgivek=∫0∞1{a+1−x21+x2}22dx1+x2=2∫0∞1+x2{a+ax2+1−x2}dx=2∫0∞1+x2{a+1+(a−1)x2}2dx=2(a+1)2∫0∞1+x2{1+a−1a+1x2}2dx=a−1a+1x=u2(a+1)2∫0∞1+a+1a−1u2{1+u2}2a+1a−1du=1(a−1)a+1a−12(a+1)2∫0∞a−1+(a+1)u2{1+u2}2du=2(a+1)2a2−1∫0∞a−1+(a+1)u2{1+u2}2dubut∫0∞a−1+(a+1)u2(1+u2)2du=(a−1)∫0∞du(1+u2)2+(a+1)∫0∞1+u2−1(1+u2)2du=(a−1)∫0∞du(1+u2)2+(a+1)π2−(a+1)∫0∞du(1+u2)2=−2∫0∞du(1+u2)2+(a+1)π2chang.u=tanθ−π2+aπ2+π2=πa2because∫0+∞du(1+u2)2=∫0π2(1+tan2θ)dθ(1+tan2θ)2=∫0π2dθ1+tan2θ=∫0π2cos2θdθ=12∫0π2(1+cos(2θ))dθ=π4⇒K=2(a+1)2a2−1πa2=πa(a+1)2a2−1. Commented by math khazana by abdo last updated on 12/Jun/18 H=∫π2πdt(a+cost)2chang.t=π+xgiveH=∫0πdx(a−cosx)2=tan(x2)=u∫0+∞1(a−1−u21+u2)22du1+u2=2∫0+∞1+u2{a+au2−1+u2}2du…wefollowthesamemethodtofindH….becontinued.. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-2pi-dt-p-cost-with-p-gt-1-Next Next post: let-f-z-e-1-z-2-1-give-f-z-at-form-of-serie-2-give-1-2-f-z-dz-at-form-of-serie- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.