Menu Close

fond-the-value-of-0-2pi-dt-a-cost-2-with-a-gt-1-




Question Number 37350 by math khazana by abdo last updated on 12/Jun/18
fond the value of  ∫_0 ^(2π)     (dt/((a +cost)^2 ))  with a>1.
fondthevalueof02πdt(a+cost)2witha>1.
Commented by math khazana by abdo last updated on 12/Jun/18
I = ∫_0 ^π   (dt/((a +cost)^2 ))  + ∫_π ^(2π)    (dt/((a +cost)^2 )) =K+H  changement  tan((t/2))=x give   k = ∫_0 ^∞  (1/({a+((1−x^2 )/(1+x^2 ))}^2 )) ((2dx)/(1+x^2 )) =2 ∫_0 ^∞     ((1+x^2 )/({a +ax^(2 ) +1−x^2 }))dx  =2∫_0 ^∞      ((1+x^2 )/({a+1 +(a−1)x^2 }^2 ))dx  = (2/((a+1)^2 )) ∫_0 ^∞     ((1+x^2 )/({ 1+((a−1)/(a+1))x^2 }^2 ))dx  =_((√((a−1)/(a+1)))x=u)    (2/((a+1)^2 )) ∫_0 ^∞     ((1+((a+1)/(a−1))u^2 )/({ 1+u^2 }^2 )) (√((a+1)/(a−1)))du  =  (1/((a−1)(√((a+1)/(a−1))))) (2/((a+1)^2 )) ∫_0 ^∞     ((a−1 +(a+1)u^2 )/({1+u^2 }^2 )) du  = (2/((a+1)^2 (√(a^2 −1)))) ∫_0 ^∞      ((a−1 +(a+1)u^2 )/({1+u^2 }^2 )) du  but  ∫_0 ^∞    ((a−1 +(a+1)u^2 )/((1+u^2 )^2 ))du  = (a−1)∫_0 ^∞    (du/((1+u^2 )^2 ))  +(a+1)∫_0 ^∞ ((1+u^2 −1)/((1+u^2 )^2 ))du  =(a−1)∫_0 ^∞    (du/((1+u^2 )^2 ))  +(a+1)(π/2) −(a+1)∫_0 ^∞   (du/((1+u^2 )^2 ))  =−2 ∫_0 ^∞    (du/((1+u^2 )^2 ))  +(a+1)(π/2)  chang.u=tanθ  −(π/2) +((aπ)/2) +(π/2) =((πa)/2)  because  ∫_0 ^(+∞)   (du/((1+u^2 )^2 )) = ∫_0 ^(π/2)    (((1+tan^2 θ)dθ)/((1+tan^2 θ)^2 ))  =∫_0 ^(π/2)   (dθ/(1+tan^2 θ)) =∫_0 ^(π/2) cos^2 θ dθ  =(1/2) ∫_0 ^(π/2) (1+cos(2θ))dθ = (π/4) ⇒  K = (2/((a+1)^2 (√(a^2 −1)))) ((πa)/2)  =((πa)/((a+1)^2 (√(a^2 −1)))) .
I=0πdt(a+cost)2+π2πdt(a+cost)2=K+Hchangementtan(t2)=xgivek=01{a+1x21+x2}22dx1+x2=201+x2{a+ax2+1x2}dx=201+x2{a+1+(a1)x2}2dx=2(a+1)201+x2{1+a1a+1x2}2dx=a1a+1x=u2(a+1)201+a+1a1u2{1+u2}2a+1a1du=1(a1)a+1a12(a+1)20a1+(a+1)u2{1+u2}2du=2(a+1)2a210a1+(a+1)u2{1+u2}2dubut0a1+(a+1)u2(1+u2)2du=(a1)0du(1+u2)2+(a+1)01+u21(1+u2)2du=(a1)0du(1+u2)2+(a+1)π2(a+1)0du(1+u2)2=20du(1+u2)2+(a+1)π2chang.u=tanθπ2+aπ2+π2=πa2because0+du(1+u2)2=0π2(1+tan2θ)dθ(1+tan2θ)2=0π2dθ1+tan2θ=0π2cos2θdθ=120π2(1+cos(2θ))dθ=π4K=2(a+1)2a21πa2=πa(a+1)2a21.
Commented by math khazana by abdo last updated on 12/Jun/18
H =∫_π ^(2π)     (dt/((a +cost)^2 ))  chang. t =π +x give  H = ∫_0 ^π      (dx/((a−cosx)^2 )) =_(tan((x/2))=u)  ∫_0 ^(+∞)     (1/((a−((1−u^2 )/(1+u^2 )))^2 )) ((2du)/(1+u^2 ))  =2∫_0 ^(+∞)      ((1+u^2 )/({a +au^2 −1+u^2 }^2 ))du ...we follow the  same method to find H....be continued..
H=π2πdt(a+cost)2chang.t=π+xgiveH=0πdx(acosx)2=tan(x2)=u0+1(a1u21+u2)22du1+u2=20+1+u2{a+au21+u2}2duwefollowthesamemethodtofindH.becontinued..

Leave a Reply

Your email address will not be published. Required fields are marked *