Menu Close

for-0-lt-r-1-and-x-R-2-find-S-n-0-r-n-cos-n-




Question Number 30601 by abdo imad last updated on 23/Feb/18
for 0<r≤1 and (θ,x)∈R^2   find  S=Σ_(n=0) ^∞  r^n cos(nθ).
for0<r1and(θ,x)R2findS=n=0rncos(nθ).
Commented by abdo imad last updated on 24/Feb/18
S=Re(Σ_(n=0) ^∞  r^n  e^(inθ) )but  Σ_(n=0) ^∞  r^n  e^(inθ)  = Σ_(n=0) ^∞ (re^(iθ) )^n  =(1/(1−re^(iθ) ))  =   (1/(1−r cosθ −irsinθ))=((1−r cosθ  +isinθ)/((1−r cosθ)^2  +r^2 sin^2 θ)) ⇒  S=   ((1−r cosθ)/((1−rcosθ)^2  +r^2  sin^2 θ))=((1−r cosθ)/(1−2rcosθ +r^2 ))  but we must  study the case r=1.
S=Re(n=0rneinθ)butn=0rneinθ=n=0(reiθ)n=11reiθ=11rcosθirsinθ=1rcosθ+isinθ(1rcosθ)2+r2sin2θS=1rcosθ(1rcosθ)2+r2sin2θ=1rcosθ12rcosθ+r2butwemuststudythecaser=1.

Leave a Reply

Your email address will not be published. Required fields are marked *