Menu Close

For-a-b-c-d-R-a-b-c-d-0-ab-ac-ad-bc-bd-cd-0-Prove-the-inequality-ab-a-b-2-ac-a-c-2-ad-a-d-2-bc-b-c-2-bd-b-d-2-cd-c-d-2-3-2-When-is-




Question Number 182043 by depressiveshrek last updated on 03/Dec/22
For a, b, c, d ∈ R  a+b+c+d=0  ab, ac, ad, bc, bd, cd ≠0  Prove the inequality:  ((ab)/((a+b)^2 ))+((ac)/((a+c)^2 ))+((ad)/((a+d)^2 ))+((bc)/((b+c)^2 ))+((bd)/((b+d)^2 ))+((cd)/((c+d)^2 ))≤−(3/2)  When is equality reached?
$${For}\:{a},\:{b},\:{c},\:{d}\:\in\:\mathbb{R} \\ $$$${a}+{b}+{c}+{d}=\mathrm{0} \\ $$$${ab},\:{ac},\:{ad},\:{bc},\:{bd},\:{cd}\:\neq\mathrm{0} \\ $$$${Prove}\:{the}\:{inequality}: \\ $$$$\frac{{ab}}{\left({a}+{b}\right)^{\mathrm{2}} }+\frac{{ac}}{\left({a}+{c}\right)^{\mathrm{2}} }+\frac{{ad}}{\left({a}+{d}\right)^{\mathrm{2}} }+\frac{{bc}}{\left({b}+{c}\right)^{\mathrm{2}} }+\frac{{bd}}{\left({b}+{d}\right)^{\mathrm{2}} }+\frac{{cd}}{\left({c}+{d}\right)^{\mathrm{2}} }\leq−\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${When}\:{is}\:{equality}\:{reached}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *