Menu Close

For-a-certain-amount-of-work-Ade-takes-6hours-less-than-Bode-if-they-work-together-it-takes-them-13hours-20-minutes-How-long-will-it-take-Bode-alone-to-complete-the-work-




Question Number 25937 by Mr eaay last updated on 16/Dec/17
For a certain amount of work,Ade takes  6hours less than Bode.if they work together  it takes them 13hours 20 minutes.How  long will it take Bode alone to complete  the work?
$${For}\:{a}\:{certain}\:{amount}\:{of}\:{work},{Ade}\:{takes} \\ $$$$\mathrm{6}{hours}\:{less}\:{than}\:{Bode}.{if}\:{they}\:{work}\:{together} \\ $$$${it}\:{takes}\:{them}\:\mathrm{13}{hours}\:\mathrm{20}\:{minutes}.{How} \\ $$$${long}\:{will}\:{it}\:{take}\:{Bode}\:{alone}\:{to}\:{complete} \\ $$$${the}\:{work}? \\ $$
Answered by ajfour last updated on 16/Dec/17
800(A+B) minutes =W  T_B −T_A =360 minutes  as  W=T_A A=T_B B  ⇒ (W/B)−(W/A)= 360  so  (W/B)−(W/(((W/(800))−B)))=360  as    T_B =(W/B)  ⇒   T_B −(1/(((1/(800))−(1/T_B ))))=360  (1/(T_B −360)) =(1/(800))−(1/T_B )  ⇒   800T_B =(T_B −800)(T_B −360)  or   T_B ^(  2) −1960T_B +800×360=0 , ⇒  (T_B −980)^2 =980×980−800×360  T_B =980+20(√(49×49−720))       =980+20(√(2401−720))       =980+20(√(1681))      =980+20×41 =1800 minutes      = 30 hours  (Bode alone takes).
$$\mathrm{800}\left({A}+{B}\right)\:{minutes}\:={W} \\ $$$${T}_{{B}} −{T}_{{A}} =\mathrm{360}\:{minutes} \\ $$$${as}\:\:{W}={T}_{{A}} {A}={T}_{{B}} {B} \\ $$$$\Rightarrow\:\frac{{W}}{{B}}−\frac{{W}}{{A}}=\:\mathrm{360} \\ $$$${so}\:\:\frac{{W}}{{B}}−\frac{{W}}{\left(\frac{{W}}{\mathrm{800}}−{B}\right)}=\mathrm{360} \\ $$$${as}\:\:\:\:{T}_{{B}} =\frac{{W}}{{B}}\:\:\Rightarrow \\ $$$$\:{T}_{{B}} −\frac{\mathrm{1}}{\left(\frac{\mathrm{1}}{\mathrm{800}}−\frac{\mathrm{1}}{{T}_{{B}} }\right)}=\mathrm{360} \\ $$$$\frac{\mathrm{1}}{{T}_{{B}} −\mathrm{360}}\:=\frac{\mathrm{1}}{\mathrm{800}}−\frac{\mathrm{1}}{{T}_{{B}} } \\ $$$$\Rightarrow\:\:\:\mathrm{800}{T}_{{B}} =\left({T}_{{B}} −\mathrm{800}\right)\left({T}_{{B}} −\mathrm{360}\right) \\ $$$${or}\:\:\:{T}_{{B}} ^{\:\:\mathrm{2}} −\mathrm{1960}{T}_{{B}} +\mathrm{800}×\mathrm{360}=\mathrm{0}\:,\:\Rightarrow \\ $$$$\left({T}_{{B}} −\mathrm{980}\right)^{\mathrm{2}} =\mathrm{980}×\mathrm{980}−\mathrm{800}×\mathrm{360} \\ $$$${T}_{{B}} =\mathrm{980}+\mathrm{20}\sqrt{\mathrm{49}×\mathrm{49}−\mathrm{720}} \\ $$$$\:\:\:\:\:=\mathrm{980}+\mathrm{20}\sqrt{\mathrm{2401}−\mathrm{720}} \\ $$$$\:\:\:\:\:=\mathrm{980}+\mathrm{20}\sqrt{\mathrm{1681}} \\ $$$$\:\:\:\:=\mathrm{980}+\mathrm{20}×\mathrm{41}\:=\mathrm{1800}\:{minutes} \\ $$$$\:\:\:\:=\:\mathrm{30}\:{hours}\:\:\left({Bode}\:{alone}\:{takes}\right). \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *