Menu Close

For-a-cubic-function-in-the-form-f-x-ax-3-bx-2-cx-d-What-must-be-true-of-a-b-c-and-d-in-order-for-the-function-to-be-able-to-be-converted-to-the-form-f-x-a-x-h-3-k-




Question Number 114253 by Dat_Das last updated on 18/Sep/20
For a cubic function in the form:  f(x) = ax^3 +bx^2 +cx+d  What must be true of a, b, c, and d in  order for the function to be able to be  converted to the form:  f(x) = a(x−h)^3 +k
$$\mathrm{For}\:\mathrm{a}\:\mathrm{cubic}\:\mathrm{function}\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}: \\ $$$${f}\left({x}\right)\:=\:{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d} \\ $$$$\mathrm{What}\:\mathrm{must}\:\mathrm{be}\:\mathrm{true}\:\mathrm{of}\:{a},\:{b},\:{c},\:\mathrm{and}\:{d}\:\mathrm{in} \\ $$$$\mathrm{order}\:\mathrm{for}\:\mathrm{the}\:\mathrm{function}\:\mathrm{to}\:\mathrm{be}\:\mathrm{able}\:\mathrm{to}\:\mathrm{be} \\ $$$$\mathrm{converted}\:\mathrm{to}\:\mathrm{the}\:\mathrm{form}: \\ $$$${f}\left({x}\right)\:=\:{a}\left({x}−{h}\right)^{\mathrm{3}} +{k} \\ $$
Answered by 1549442205PVT last updated on 18/Sep/20
We need must find a,b,c,d such that   ax^3 +bx^2 +cx+d=a(x−h)^3 +k  ⇔ ax^3 +bx^2 +cx+d≡ax^3 −3ahx^2 +3ah^2 x−ah^3 +k  ⇔ { ((b=−3ah)),((c=3ah^2 )),((d=−ah^3 +k)) :}  where a is arbitrary;h,k given
$$\mathrm{We}\:\mathrm{need}\:\mathrm{must}\:\mathrm{find}\:\mathrm{a},\mathrm{b},\mathrm{c},\mathrm{d}\:\mathrm{such}\:\mathrm{that} \\ $$$$\:{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}={a}\left({x}−{h}\right)^{\mathrm{3}} +{k} \\ $$$$\Leftrightarrow\:{ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}\equiv\mathrm{ax}^{\mathrm{3}} −\mathrm{3ahx}^{\mathrm{2}} +\mathrm{3ah}^{\mathrm{2}} \mathrm{x}−\mathrm{ah}^{\mathrm{3}} +\mathrm{k} \\ $$$$\Leftrightarrow\begin{cases}{\mathrm{b}=−\mathrm{3ah}}\\{\mathrm{c}=\mathrm{3ah}^{\mathrm{2}} }\\{\mathrm{d}=−\mathrm{ah}^{\mathrm{3}} +\mathrm{k}}\end{cases} \\ $$$$\mathrm{where}\:\mathrm{a}\:\mathrm{is}\:\mathrm{arbitrary};\mathrm{h},\mathrm{k}\:\mathrm{given} \\ $$$$ \\ $$
Commented by Dat_Das last updated on 18/Sep/20
This is true, however you may relate  a, b, c directly. Take  b=−3ah  (b/(−3a))=h  (b^2 /(9a^2 ))=h^2   (b^2 /(3a))=3ah^2   Substituting c for 3ah^2  we get  (b^2 /(3a))=c  Therefore for any function  ax^3 +bx^2 +cx+d that may have the form  a(x−h)^3 +k, then  c=(b^2 /(3a))
$$\mathrm{This}\:\mathrm{is}\:\mathrm{true},\:\mathrm{however}\:\mathrm{you}\:\mathrm{may}\:\mathrm{relate} \\ $$$${a},\:{b},\:{c}\:\mathrm{directly}.\:\mathrm{Take} \\ $$$${b}=−\mathrm{3}{ah} \\ $$$$\frac{{b}}{−\mathrm{3}{a}}={h} \\ $$$$\frac{{b}^{\mathrm{2}} }{\mathrm{9}{a}^{\mathrm{2}} }={h}^{\mathrm{2}} \\ $$$$\frac{{b}^{\mathrm{2}} }{\mathrm{3}{a}}=\mathrm{3}{ah}^{\mathrm{2}} \\ $$$$\mathrm{Substituting}\:{c}\:\mathrm{for}\:\mathrm{3}{ah}^{\mathrm{2}} \:\mathrm{we}\:\mathrm{get} \\ $$$$\frac{{b}^{\mathrm{2}} }{\mathrm{3}{a}}={c} \\ $$$$\mathrm{Therefore}\:\mathrm{for}\:\mathrm{any}\:\mathrm{function} \\ $$$${ax}^{\mathrm{3}} +{bx}^{\mathrm{2}} +{cx}+{d}\:\mathrm{that}\:\mathrm{may}\:\mathrm{have}\:\mathrm{the}\:\mathrm{form} \\ $$$${a}\left({x}−{h}\right)^{\mathrm{3}} +{k},\:\mathrm{then} \\ $$$${c}=\frac{{b}^{\mathrm{2}} }{\mathrm{3}{a}} \\ $$
Commented by 1549442205PVT last updated on 18/Sep/20
ThankYou.But d is alone!it isn′t  arbitrary!so c=(b^2 /(3a)) isn′t enough!
$$\mathrm{ThankYou}.\mathrm{But}\:\mathrm{d}\:\mathrm{is}\:\mathrm{alone}!\mathrm{it}\:\mathrm{isn}'\mathrm{t} \\ $$$$\mathrm{arbitrary}!\mathrm{so}\:\mathrm{c}=\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{3a}}\:\mathrm{isn}'\mathrm{t}\:\mathrm{enough}! \\ $$
Commented by Dat_Das last updated on 18/Sep/20
I thought about this. After checking that  c=(b^2 /(3a)) is true and determining h, you set  k=d+ah^(3 ) . This accounts for the only  specification of d and makes it independent  of a, b, c.
$$\mathrm{I}\:\mathrm{thought}\:\mathrm{about}\:\mathrm{this}.\:\mathrm{After}\:\mathrm{checking}\:\mathrm{that} \\ $$$${c}=\frac{{b}^{\mathrm{2}} }{\mathrm{3}{a}}\:\mathrm{is}\:\mathrm{true}\:\mathrm{and}\:\mathrm{determining}\:{h},\:\mathrm{you}\:\mathrm{set} \\ $$$${k}={d}+{ah}^{\mathrm{3}\:} .\:\mathrm{This}\:\mathrm{accounts}\:\mathrm{for}\:\mathrm{the}\:\mathrm{only} \\ $$$$\mathrm{specification}\:\mathrm{of}\:{d}\:\mathrm{and}\:\mathrm{makes}\:\mathrm{it}\:\mathrm{independent} \\ $$$$\mathrm{of}\:{a},\:{b},\:{c}. \\ $$
Commented by Rasheed.Sindhi last updated on 18/Sep/20
Couldn′t we determine relation  between a,c,d ; b,c,d or a,b,d by  excluding one of a,b,c ?
$${Couldn}'{t}\:{we}\:{determine}\:{relation} \\ $$$${between}\:{a},{c},{d}\:;\:{b},{c},{d}\:{or}\:{a},{b},{d}\:{by} \\ $$$${excluding}\:{one}\:{of}\:{a},{b},{c}\:? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *