Menu Close

for-a-is-integer-number-such-that-x-1-2-a-exactly-has-2013-solution-




Question Number 98806 by bemath last updated on 16/Jun/20
for a is integer number such that  ∣∣x−1∣ −2∣ ≤ a  exactly has 2013  solution
foraisintegernumbersuchthat∣∣x12aexactlyhas2013solution
Commented by Rasheed.Sindhi last updated on 16/Jun/20
Assuming x an integer:  ∣∣x−1∣ −2∣ ≤ a  ⇒ { ((∣x−1−2∣≤a⇒∣x−3∣≤a...(i))),((∣−x+1−2∣≤a⇒∣−x−1∣≤a..(ii))) :}  (i)⇒ { ((x−3≤a⇒x≤a+3)),((−x+3≤a⇒x≥−a+3)) :} ..(iii)  (ii)⇒ { ((−x−1≤a⇒x≥−a−1)),((x+1≤a⇒x≤a−1)) :}..(iv)  (iii)⇒−a+3≤x≤a+3......(v)  (iv)⇒−a−1≤x≤a−1......(vi)  (v)&(vi)⇒−a−1≤x≤a+3                    −1004−1≤x≤1004+3                         −1005≤x≤1007  x=−1005,−1004,...,−2,−1,0,1,2...,1006,1007         a=1004
Assumingxaninteger:∣∣x12a{x12∣⩽a⇒∣x3∣⩽a(i)x+12∣⩽a⇒∣x1∣⩽a..(ii)(i){x3axa+3x+3axa+3..(iii)(ii){x1axa1x+1axa1..(iv)(iii)a+3xa+3(v)(iv)a1xa1(vi)(v)&(vi)a1xa+310041x1004+31005x1007x=1005,1004,,2,1,0,1,2,1006,1007a=1004

Leave a Reply

Your email address will not be published. Required fields are marked *