Question Number 119696 by bemath last updated on 26/Oct/20
$${For}\:{a}<{b}\:{then}\:\underset{{a}} {\overset{{b}} {\int}}\:\left({x}−{a}\right)\left({x}−{b}\right)\:{dx}\: \\ $$$${equal}\:{to}\:\_ \\ $$
Answered by TANMAY PANACEA last updated on 26/Oct/20
$$\int_{{a}} ^{{b}} \left({x}^{\mathrm{2}} −{x}\left({a}+{b}\right)+{ab}\right)\:{dx} \\ $$$$=\mid\frac{{x}^{\mathrm{3}} }{\mathrm{3}}−\left({a}+{b}\right)\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+{abx}\mid_{{a}} ^{{b}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left({b}^{\mathrm{3}} −{a}^{\mathrm{3}} \right)−\frac{\left({b}+{a}\right)\left({b}^{\mathrm{2}} −{a}^{\mathrm{2}} \right)}{\mathrm{2}}+{ab}\left({b}−{a}\right) \\ $$$$=\frac{\mathrm{2}{b}^{\mathrm{3}} −\mathrm{2}{a}^{\mathrm{3}} −\mathrm{3}\left({b}^{\mathrm{3}} −{a}^{\mathrm{2}} {b}+{ab}^{\mathrm{2}} −{a}^{\mathrm{3}} \right)+\mathrm{6}{ab}^{\mathrm{2}} −\mathrm{6}{a}^{\mathrm{2}} {b}}{\mathrm{6}} \\ $$$$=\frac{\mathrm{2}{b}^{\mathrm{3}} −\mathrm{2}{a}^{\mathrm{3}} −\mathrm{3}{b}^{\mathrm{3}} +\mathrm{3}{a}^{\mathrm{2}} {b}−\mathrm{3}{ab}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{3}} +\mathrm{6}{ab}^{\mathrm{2}} −\mathrm{6}{a}^{\mathrm{2}} {b}}{\mathrm{6}} \\ $$$$=\frac{−{b}^{\mathrm{3}} +{a}^{\mathrm{3}} −\mathrm{3}{a}^{\mathrm{2}} {b}+\mathrm{3}{ab}^{\mathrm{2}} }{\mathrm{6}}\: \\ $$$$=\frac{\left({a}−{b}\right)^{\mathrm{3}} }{\mathrm{6}} \\ $$$$ \\ $$
Commented by TANMAY PANACEA last updated on 26/Oct/20
$${most}\:{welcome}\:{sir} \\ $$
Commented by Ar Brandon last updated on 26/Oct/20
I found my mistake. Thanks Sir
Answered by mathmax by abdo last updated on 26/Oct/20
$$\int_{\mathrm{a}} ^{\mathrm{b}} \left(\mathrm{x}−\mathrm{a}\right)\left(\mathrm{x}−\mathrm{b}\right)\mathrm{dx}\:=_{\mathrm{x}−\mathrm{a}=\mathrm{t}} \:\:\:\int_{\mathrm{0}} ^{\mathrm{b}−\mathrm{a}} \mathrm{t}\left(\mathrm{t}+\mathrm{a}−\mathrm{b}\right)\mathrm{dt} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{b}−\mathrm{a}} \left(\mathrm{t}^{\mathrm{2}} +\left(\mathrm{a}−\mathrm{b}\right)\mathrm{t}\right)\mathrm{dt}\:=\left[\frac{\mathrm{t}^{\mathrm{3}} }{\mathrm{3}}\:+\frac{\mathrm{a}−\mathrm{b}}{\mathrm{2}}\mathrm{t}^{\mathrm{2}} \right]_{\mathrm{0}} ^{\mathrm{b}−\mathrm{a}} \\ $$$$=\frac{\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{3}} }{\mathrm{3}}\:+\frac{\mathrm{a}−\mathrm{b}}{\mathrm{2}}\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{2}} \:=\frac{\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{3}} }{\mathrm{3}}−\frac{\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{3}} }{\mathrm{2}} \\ $$$$=−\frac{\left(\mathrm{b}−\mathrm{a}\right)^{\mathrm{3}} }{\mathrm{6}} \\ $$