Menu Close

For-a-lt-b-then-a-b-x-a-x-b-dx-equal-to-




Question Number 119696 by bemath last updated on 26/Oct/20
For a<b then ∫_a ^b  (x−a)(x−b) dx   equal to _
Fora<bthenba(xa)(xb)dxequalto_
Answered by TANMAY PANACEA last updated on 26/Oct/20
∫_a ^b (x^2 −x(a+b)+ab) dx  =∣(x^3 /3)−(a+b)(x^2 /2)+abx∣_a ^b   =(1/3)(b^3 −a^3 )−(((b+a)(b^2 −a^2 ))/2)+ab(b−a)  =((2b^3 −2a^3 −3(b^3 −a^2 b+ab^2 −a^3 )+6ab^2 −6a^2 b)/6)  =((2b^3 −2a^3 −3b^3 +3a^2 b−3ab^2 +3a^3 +6ab^2 −6a^2 b)/6)  =((−b^3 +a^3 −3a^2 b+3ab^2 )/6)   =(((a−b)^3 )/6)
ab(x2x(a+b)+ab)dx=∣x33(a+b)x22+abxab=13(b3a3)(b+a)(b2a2)2+ab(ba)=2b32a33(b3a2b+ab2a3)+6ab26a2b6=2b32a33b3+3a2b3ab2+3a3+6ab26a2b6=b3+a33a2b+3ab26=(ab)36
Commented by TANMAY PANACEA last updated on 26/Oct/20
most welcome sir
mostwelcomesir
Commented by Ar Brandon last updated on 26/Oct/20
I found my mistake. Thanks Sir
Answered by mathmax by abdo last updated on 26/Oct/20
∫_a ^b (x−a)(x−b)dx =_(x−a=t)    ∫_0 ^(b−a) t(t+a−b)dt  =∫_0 ^(b−a) (t^2 +(a−b)t)dt =[(t^3 /3) +((a−b)/2)t^2 ]_0 ^(b−a)   =(((b−a)^3 )/3) +((a−b)/2)(b−a)^2  =(((b−a)^3 )/3)−(((b−a)^3 )/2)  =−(((b−a)^3 )/6)
ab(xa)(xb)dx=xa=t0bat(t+ab)dt=0ba(t2+(ab)t)dt=[t33+ab2t2]0ba=(ba)33+ab2(ba)2=(ba)33(ba)32=(ba)36

Leave a Reply

Your email address will not be published. Required fields are marked *