Question Number 50007 by Joel578 last updated on 13/Dec/18

Commented by Abdo msup. last updated on 13/Dec/18
![changement (√(x−a))=t give x−a=t^2 ⇒ I =∫_0 ^(√(b−a)) t(√(b−(a+t^2 )))2t dt =2∫_0 ^(√(b−a)) t^2 (√(b−a−t^2 ))dt =_(t=(√(b−a))sinu) 2 ∫_0 ^(π/2) (b−a)sin^2 u(√(b−a))cosu (√(b−a))cosu du =2(b−a)^2 ∫_0 ^(π/2) sin^2 u cos^2 u du =2(b−a)^2 (1/4) ∫_0 ^(π/2) sin^2 (2u) du =(((b−a)^2 )/2) ∫_0 ^(π/2) ((1−cos(4u))/2) du =(((b−a)^2 )/4) ∫_0 ^(π/2) (1−cos(4u))du =(π/8)(b−a)^2 −(((b−a)^2 )/(16))[sin(4u)]_0 ^(π/2) ★I=(π/8)(b−a)^2 ★](https://www.tinkutara.com/question/Q50092.png)
Answered by ajfour last updated on 13/Dec/18
![let x− ((a+b)/2) = t ∫_(−((b−a)/2)) ^( ((b−a)/2)) (√(t+((b−a)/2))) (√(((b−a)/2)−t)) dt let c = ((b−a)/2) =∫_(−c) ^( c) (√(c^2 −t^2 )) dt = 2∫_0 ^( c) (√(c^2 −t^2 )) dt = 2[(t/2)(√(c^2 −t^2 ))+(c^2 /2)sin^(−1) (t/c)]_0 ^c = ((c^2 π)/2) = (((b−a)^2 π)/8) .](https://www.tinkutara.com/question/Q50024.png)
Commented by MJS last updated on 13/Dec/18

Commented by ajfour last updated on 13/Dec/18

Commented by Joel578 last updated on 13/Dec/18
