Menu Close

for-all-n-N-f-n-x-k-1-n-1-n-x-n-for-any-1-lt-x-lt-1-If-f-1-1-R-with-f-lim-n-f-n-of-1-1-0-1-2-f-x-dx-




Question Number 56708 by gunawan last updated on 22/Mar/19
for all n ∈ N, f_n (x)=Σ_(k=1) ^n (−1)^n x^n   for any −1<x<1. If f : (−1,1)→R  with f =lim_(n→∞)  f_(n ) of (−1,1)  ∫_0 ^(1/2) f(x) dx=...
forallnN,fn(x)=nk=1(1)nxnforany1<x<1.Iff:(1,1)Rwithf=limnfnof(1,1)012f(x)dx=
Commented by Abdo msup. last updated on 22/Mar/19
we have f_n (x)=Σ_(k=1) ^n (−x)^k  =Σ_(k=0) ^n (−x)^k −1  =((1−(−x)^(n+1) )/(1+x)) −1 =((1−(−x)^(n+1) −1−x)/(1+x))  but ∣x∣<1 ⇒lim_(n→+∞)    f_n (x)=((−x)/(1+x)) ⇒  f(x)=((−x)/(1+x)) ⇒∫_0 ^(1/2) f(x)dx =−∫_0 ^(1/2)   ((1+x−1)/(1+x))dx  =−(1/2) +∫_0 ^(1/2)  (dx/(1+x)) =−(1/2) +[ln∣1+x∣]_0 ^(1/2)   =−(1/2) +ln((3/2)) .  here i have used that lim f_n =f .
wehavefn(x)=k=1n(x)k=k=0n(x)k1=1(x)n+11+x1=1(x)n+11x1+xbutx∣<1limn+fn(x)=x1+xf(x)=x1+x012f(x)dx=0121+x11+xdx=12+012dx1+x=12+[ln1+x]012=12+ln(32).hereihaveusedthatlimfn=f.

Leave a Reply

Your email address will not be published. Required fields are marked *