Menu Close

For-all-n-N-f-n-x-nx-2n-1-x-0-2n-1-n-1-x-2n-1-n-2-then-for-n-1-2-f-n-x-dx-convergences-to-




Question Number 55638 by gunawan last updated on 01/Mar/19
For all n ∈ N  f_n (x)= { ((((nx)/(2n−1)),     x ∈ [0, ((2n−1)/n)])),((1          ,      x ∈[((2n−1)/n), 2])) :}  then for n→∞  ∫_1 ^2 f_n (x) dx convergences to..
ForallnNfn(x)={nx2n1,x[0,2n1n]1,x[2n1n,2]thenforn12fn(x)dxconvergencesto..
Answered by tanmay.chaudhury50@gmail.com last updated on 01/Mar/19
∫_1 ^((2n−1)/n) ((nx)/(2n−1))dx+∫_((2n−1)/n) ^2  1×dx  (n/(2n−1))×∣^ (x^2 /2)∣_1 ^((2n−1)/n)  +∣x∣_((2n−1)/n) ^2   =(n/(2(2n−1)))×{(((2n−1)/n))^2 −1}+2−(((2n−1)/n))  =(1/2)×((2n−1)/n)−(n/(2(2n−1)))+2−((2n−1)/n)  =2−(((2n−1))/(2n))−(n/(2(2n−1)))  =2−((2−(1/n))/2)−((n/n)/(2(((2n)/n)−(1/n))))  =2−((2−(1/n))/2)−(1/(2(2−(1/n))))  when n→∞  =2−((2−0)/2)−(1/(2(2−0)))  =2−1−(1/4)  1−(1/4)=(3/4)
12n1nnx2n1dx+2n1n21×dxn2n1×x2212n1n+x2n1n2=n2(2n1)×{(2n1n)21}+2(2n1n)=12×2n1nn2(2n1)+22n1n=2(2n1)2nn2(2n1)=221n2nn2(2nn1n)=221n212(21n)whenn=220212(20)=2114114=34

Leave a Reply

Your email address will not be published. Required fields are marked *