Menu Close

For-any-complex-number-z-z-n-z-has-n-2-solutions-How-




Question Number 128459 by SLVR last updated on 07/Jan/21
For any complex number z,z^n =z^�  has (n+2) solutions How???
Foranycomplexnumberz,zn=z¯has(n+2)solutionsHow???
Answered by mr W last updated on 10/Jan/21
let z=r(cos θ+i sin θ)=re^(iθ)   z^n =r^n (cos nθ+i sin nθ)  z^� =r(cos θ−i sin θ)  r=0 is a solution.  for r≠0:  r^n cos nθ=r cos θ ⇒r^(n−1) =((cos θ)/(cos nθ))   ...(1)  r^n sin nθ=−r sin θ ⇒r^(n−1) =−((sin θ)/(sin nθ))   ...(2)  ((cos θ)/(cos nθ))=−((sin θ)/(sin nθ))   sin nθ cos θ+cos nθ sin θ=1  sin (n+1)θ=1  ⇒(n+1)θ=2kπ+(π/2)  ⇒θ=((2kπ)/(n+1))+(π/(2(n+1))) with k=0,1,...,n  i.e. there are n+1 solutions for θ  and therefore for r and therefore  for z.  so totally there are n+2 solutions:  z=0  z_k =r_k (cos θ_k +i sin θ_k )=r_k e^(iθ_k )   with  θ_k =((2kπ)/(n+1))+(π/(2(n+1)))  r_k =(((cos θ_k )/(cos nθ_k )))^(1/(n−1))   and k=0,1,...,n
letz=r(cosθ+isinθ)=reiθzn=rn(cosnθ+isinnθ)z¯=r(cosθisinθ)r=0isasolution.forr0:rncosnθ=rcosθrn1=cosθcosnθ(1)rnsinnθ=rsinθrn1=sinθsinnθ(2)cosθcosnθ=sinθsinnθsinnθcosθ+cosnθsinθ=1sin(n+1)θ=1(n+1)θ=2kπ+π2θ=2kπn+1+π2(n+1)withk=0,1,,ni.e.therearen+1solutionsforθandthereforeforrandthereforeforz.sototallytherearen+2solutions:z=0zk=rk(cosθk+isinθk)=rkeiθkwithθk=2kπn+1+π2(n+1)rk=cosθkcosnθkn1andk=0,1,,n

Leave a Reply

Your email address will not be published. Required fields are marked *