For-any-complex-number-z-z-n-z-has-n-2-solutions-How- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 128459 by SLVR last updated on 07/Jan/21 Foranycomplexnumberz,zn=z¯has(n+2)solutionsHow??? Answered by mr W last updated on 10/Jan/21 letz=r(cosθ+isinθ)=reiθzn=rn(cosnθ+isinnθ)z¯=r(cosθ−isinθ)r=0isasolution.forr≠0:rncosnθ=rcosθ⇒rn−1=cosθcosnθ…(1)rnsinnθ=−rsinθ⇒rn−1=−sinθsinnθ…(2)cosθcosnθ=−sinθsinnθsinnθcosθ+cosnθsinθ=1sin(n+1)θ=1⇒(n+1)θ=2kπ+π2⇒θ=2kπn+1+π2(n+1)withk=0,1,…,ni.e.therearen+1solutionsforθandthereforeforrandthereforeforz.sototallytherearen+2solutions:z=0zk=rk(cosθk+isinθk)=rkeiθkwithθk=2kπn+1+π2(n+1)rk=cosθkcosnθkn−1andk=0,1,…,n Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-0-cosx-logx-Next Next post: Question-128458 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.