Menu Close

For-any-integer-k-let-k-cos-kpi-7-i-sin-kpi-7-where-i-1-The-value-of-the-expression-k-1-12-k-1-k-k-1-3-4k-1-4k-2-is-




Question Number 21235 by Tinkutara last updated on 17/Sep/17
For any integer k, let α_k  = cos (((kπ)/7)) +  i sin (((kπ)/7)), where i = (√(−1)). The value of  the expression ((Σ_(k=1) ^(12) ∣α_(k+1)  − α_k ∣)/(Σ_(k=1) ^3 ∣α_(4k−1)  − α_(4k−2) ∣)) is
Foranyintegerk,letαk=cos(kπ7)+isin(kπ7),wherei=1.Thevalueoftheexpression12k=1αk+1αk3k=1α4k1α4k2is
Answered by sma3l2996 last updated on 17/Sep/17
α_k =e^(i((kπ)/7)) ; α_(k+1) =e^(i(k+1)(π/7))   α_(k+1) −α_k =e^(ik(π/7)) (e^(i(π/7)) −1)  ∣α_(k+1) −α_k ∣=∣e^(ik(π/7)) ∣.∣e^(i(π/7)) −1∣=∣e^(i(π/7)) −1∣  α_(4k−1) =e^(−i(π/7)) .e^(i4k(π/7))    ;  α_(4k−2) =e^(−2i(π/7)) .e^(4ik(π/7))   α_(4k−1) −α_(4k−2) =e^(4ik(π/7)) (e^(−i(π/7)) −e^(−2i(π/7)) )=e^(i(4k−2)(π/7)) (e^(i(π/7)) −1)  so  ∣α_(4k−1) −α_(4k−2) ∣=∣e^(i(4k−2)(π/7)) ∣.∣e^(i(π/7)) −1∣=∣e^(i(π/7)) −1∣  so  : ((Σ_(k=1) ^(12) ∣α_(k+1) −α_k ∣)/(Σ_(k=1) ^3 ∣α_(4k−1) −α_(4k−2) ∣))=((12∣e^(i(π/7)) −1∣)/(3∣e^(i(π/7)) −1∣))=4
αk=eikπ7;αk+1=ei(k+1)π7αk+1αk=eikπ7(eiπ71)αk+1αk∣=∣eikπ7.eiπ71∣=∣eiπ71α4k1=eiπ7.ei4kπ7;α4k2=e2iπ7.e4ikπ7α4k1α4k2=e4ikπ7(eiπ7e2iπ7)=ei(4k2)π7(eiπ71)soα4k1α4k2∣=∣ei(4k2)π7.eiπ71∣=∣eiπ71so:12k=1αk+1αk3k=1α4k1α4k2=12eiπ713eiπ71=4
Commented by Tinkutara last updated on 17/Sep/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *