Menu Close

For-any-integer-n-let-I-n-be-the-interval-n-n-1-Define-R-x-y-R-both-x-y-I-n-for-some-n-Z-Then-R-is-A-reflexive-on-R-B-symmetric-C-transitive-D-an-equivalence-relation-




Question Number 119757 by Ar Brandon last updated on 26/Oct/20
For any integer n, let I_n  be the interval (n, n+1).  Define         R={(x, y)∈R∣both x, y ∈ I_n  for some n∈Z}  Then R is  (A) reflexive on R  (B) symmetric  (C) transitive  (D) an equivalence relation
$$\mathrm{For}\:\mathrm{any}\:\mathrm{integer}\:{n},\:\mathrm{let}\:{I}_{{n}} \:\mathrm{be}\:\mathrm{the}\:\mathrm{interval}\:\left({n},\:{n}+\mathrm{1}\right). \\ $$$$\mathrm{Define} \\ $$$$\:\:\:\:\:\:\:\mathcal{R}=\left\{\left(\mathrm{x},\:\mathrm{y}\right)\in\mathbb{R}\mid\mathrm{both}\:\mathrm{x},\:\mathrm{y}\:\in\:{I}_{{n}} \:\mathrm{for}\:\mathrm{some}\:{n}\in\mathbb{Z}\right\} \\ $$$$\mathrm{Then}\:\mathcal{R}\:\mathrm{is} \\ $$$$\left(\mathrm{A}\right)\:\mathrm{reflexive}\:\mathrm{on}\:\mathbb{R} \\ $$$$\left(\mathrm{B}\right)\:\mathrm{symmetric} \\ $$$$\left(\mathrm{C}\right)\:\mathrm{transitive} \\ $$$$\left(\mathrm{D}\right)\:\mathrm{an}\:\mathrm{equivalence}\:\mathrm{relation} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *