Menu Close

For-any-positive-integer-n-n-is-the-number-of-its-factors-Prove-i-1-n-i-i-1-n-n-i-




Question Number 90470 by Asif Hypothesis last updated on 23/Apr/20
For any positive integer n, τ(n) is the number of its factors   Prove,  Σ_(i=1) ^n τ(i)=Σ_(i=1) ^n ⌊n/i⌋
$${For}\:{any}\:{positive}\:{integer}\:{n},\:\tau\left({n}\right)\:{is}\:{the}\:{number}\:{of}\:{its}\:{factors}\: \\ $$$${Prove}, \\ $$$$\sum_{{i}=\mathrm{1}} ^{{n}} \tau\left({i}\right)=\sum_{{i}=\mathrm{1}} ^{{n}} \lfloor{n}/{i}\rfloor \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *