Menu Close

For-any-Real-numbers-x-y-and-z-if-x-y-z-2-then-prove-that-xyz-8-1-x-1-y-1-z-




Question Number 109595 by nimnim last updated on 24/Aug/20
For any Real numbers x,y and z,   if  (x+y+z)=2, then prove that          xyz≥8(1−x)(1−y)(1−z)
ForanyRealnumbersx,yandz,if(x+y+z)=2,thenprovethatxyz8(1x)(1y)(1z)
Commented by 1549442205PVT last updated on 25/Aug/20
This inequality is only true for  x,y,z>0 .Example,for x=−(2/3),y=(6/5)  z=((22)/(15)) then it is false.Then  xyz−8(1−x)(1−y)(1−z)=−((544)/(25))<0
Thisinequalityisonlytrueforx,y,z>0.Example,forx=23,y=65z=2215thenitisfalse.Thenxyz8(1x)(1y)(1z)=54425<0
Answered by floor(10²Eta[1]) last updated on 24/Aug/20
((x+y+z)/3)≥^3 (√(xyz))⇒(2/3)≥^3 (√(xyz))∴(8/(27))≥xyz  ⇒xyz≥8(1−x)(1−y)(1−z)  ⇔(1/(27))≥(1−x)(1−y)(1−z)  (((1−x)+(1−y)+(1−z))/3)≥^3 (√((1−x)(1−y)(1−z)))  ((3−(x+y+z))/3)≥^3 (√((1−x)(1−y)(1−z)))  (1/3)≥^3 (√((1−x)(1−y)(1−z)))  (1/(27))≥(1−x)(1−y)(1−z)   ∴xyz≥8(1−x)(1−y)(1−z), x+y+z=2
x+y+z33xyz233xyz827xyzxyz8(1x)(1y)(1z)127(1x)(1y)(1z)(1x)+(1y)+(1z)33(1x)(1y)(1z)3(x+y+z)33(1x)(1y)(1z)133(1x)(1y)(1z)127(1x)(1y)(1z)xyz8(1x)(1y)(1z),x+y+z=2
Commented by nimnim last updated on 24/Aug/20
Thank you sir..
Thankyousir..
Commented by floor(10²Eta[1]) last updated on 25/Aug/20
i just used AM-GM inequality which  is true for all real numbers
ijustusedAMGMinequalitywhichistrueforallrealnumbers

Leave a Reply

Your email address will not be published. Required fields are marked *