Menu Close

For-each-positive-integer-n-define-a-n-20-n-2-and-d-n-gcd-a-n-a-n-2-Find-the-set-of-all-values-that-are-taken-by-d-n-




Question Number 22635 by Rasheed.Sindhi last updated on 21/Oct/17
For each positive integer n, define  a_n =20+n^2 ,and d_n =gcd(a_n ,a_(n+2) ).  Find the set of all values that are  taken by d_n .
Foreachpositiveintegern,definean=20+n2,anddn=gcd(an,an+2).Findthesetofallvaluesthataretakenbydn.
Answered by Rasheed.Sindhi last updated on 21/Oct/17
a_n =20+n^2 , d_n =gcd(a_n ,a_(n+2) )  −−−−−−−−−−−−−  ∵ d_n =gcd(a_n ,a_(n+2) )  ∴ d_n  ∣ 20+n^2  ∧ d_n  ∣ 20+(n+2)^2   ∴ d_n  ∣ {20+(n+2)^2 }−(20+n^2 )       d_n  ∣ 4(n+1)⇒d_n ∣ (n+1)........(i)  Now, 20+n^2 =(n+1)(n−1)+21  So d_n  ∣ 20+n^2 ⇒d_n ∣ (n+1)(n−1)+21....(ii)   (i)&(ii): d_n ∣ 21        ∴The required set is{1,3,7,21}  (Method of proof used by Mr Tinkutara in  answer of Q# 22379)
an=20+n2,dn=gcd(an,an+2)dn=gcd(an,an+2)dn20+n2dn20+(n+2)2dn{20+(n+2)2}(20+n2)dn4(n+1)dn(n+1)..(i)Now,20+n2=(n+1)(n1)+21Sodn20+n2dn(n+1)(n1)+21.(ii)(i)&(ii):dn21Therequiredsetis{1,3,7,21}(MethodofproofusedbyMrTinkutarainYou can't use 'macro parameter character #' in math mode

Leave a Reply

Your email address will not be published. Required fields are marked *