Menu Close

For-each-positive-integer-n-define-a-n-30-n-2-and-d-n-gcd-a-n-a-n-1-Find-the-set-of-all-values-that-are-taken-by-d-n-and-show-by-examples-that-each-of-these-values-are-attained-




Question Number 22625 by Rasheed.Sindhi last updated on 21/Oct/17
For each positive integer n define  a_n =30+n^2 ,and d_n =gcd(a_n ,a_(n+1) ).  Find the set of all values that are  taken by d_n  and show by examples  that each of these values are attained.
$$\mathrm{For}\:\mathrm{each}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{n}\:\mathrm{define} \\ $$$$\mathrm{a}_{\mathrm{n}} =\mathrm{30}+\mathrm{n}^{\mathrm{2}} ,\mathrm{and}\:\mathrm{d}_{\mathrm{n}} =\mathrm{gcd}\left(\mathrm{a}_{\mathrm{n}} ,\mathrm{a}_{\mathrm{n}+\mathrm{1}} \right). \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{set}\:\mathrm{of}\:\mathrm{all}\:\mathrm{values}\:\mathrm{that}\:\mathrm{are} \\ $$$$\mathrm{taken}\:\mathrm{by}\:\mathrm{d}_{\mathrm{n}} \:\mathrm{and}\:\mathrm{show}\:\mathrm{by}\:\mathrm{examples} \\ $$$$\mathrm{that}\:\mathrm{each}\:\mathrm{of}\:\mathrm{these}\:\mathrm{values}\:\mathrm{are}\:\mathrm{attained}. \\ $$
Commented by Tinkutara last updated on 21/Oct/17
Probably d_n ={1,11,121}
$${Probably}\:{d}_{{n}} =\left\{\mathrm{1},\mathrm{11},\mathrm{121}\right\} \\ $$
Commented by Rasheed.Sindhi last updated on 21/Oct/17
Are you sure that 11^3 =1331  or any other number doesn′t   include? Or even the above set  is finite? Can we prove it?  In general if a_n =k+n^2 ,for what values  of  k, d_n  is finite?
$$\mathrm{Are}\:\mathrm{you}\:\mathrm{sure}\:\mathrm{that}\:\mathrm{11}^{\mathrm{3}} =\mathrm{1331} \\ $$$$\mathrm{or}\:\mathrm{any}\:\mathrm{other}\:\mathrm{number}\:\mathrm{doesn}'\mathrm{t}\: \\ $$$$\mathrm{include}?\:\mathrm{Or}\:\mathrm{even}\:\mathrm{the}\:\mathrm{above}\:\mathrm{set} \\ $$$$\mathrm{is}\:\mathrm{finite}?\:\mathrm{Can}\:\mathrm{we}\:\mathrm{prove}\:\mathrm{it}? \\ $$$$\mathrm{In}\:\mathrm{general}\:\mathrm{if}\:\mathrm{a}_{\mathrm{n}} =\mathrm{k}+\mathrm{n}^{\mathrm{2}} ,\mathrm{for}\:\mathrm{what}\:\mathrm{values} \\ $$$$\mathrm{of}\:\:\mathrm{k},\:\mathrm{d}_{\mathrm{n}} \:\mathrm{is}\:\mathrm{finite}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *