Menu Close

for-every-n-N-f-n-x-nx-1-x-2-n-for-every-x-0-x-1-and-a-n-0-1-f-n-x-dx-If-S-n-sin-pia-n-for-every-n-N-then-lim-n-s-n-




Question Number 55907 by gunawan last updated on 06/Mar/19
for every n ∈ N , f_n (x)=nx(1−x^2 )^n ,  for every x, 0≤x≤1  and a_n =∫_0 ^1 f_n (x) dx.  If S_n =sin (πa_n ), for every  n∈ N, then lim_(n→∞)  s_n =...
foreverynN,fn(x)=nx(1x2)n,foreveryx,0x1andan=01fn(x)dx.IfSn=sin(πan),foreverynN,thenlimnsn=
Commented by maxmathsup by imad last updated on 06/Mar/19
we have a_n =∫_0 ^1 nx(1−x^2 )^n dx ⇒πa_n =nπ ∫_0 ^1 x(1−x^2 )^n dx  but  ∫_0 ^1 x(1−x^2 )^n  dx =−(1/(2(n+1)))[(1−x^2 )^(n+1) ]_0 ^1  =(1/(2n+2)) ⇒πa_n =((nπ)/(2n+2))  =((nπ)/(2n(1+(1/n)))) =(π/(2(1+(1/n)))) ∼(π/2)(1−(1/n)) (n→+∞ ⇒sin(πa_n )∼sin((π/2)−(π/(2n)))  ⇒lim_(n→+∞) S_n =sin((π/2)) =1 .
wehavean=01nx(1x2)ndxπan=nπ01x(1x2)ndxbut01x(1x2)ndx=12(n+1)[(1x2)n+1]01=12n+2πan=nπ2n+2=nπ2n(1+1n)=π2(1+1n)π2(11n)(n+sin(πan)sin(π2π2n)limn+Sn=sin(π2)=1.
Answered by 121194 last updated on 06/Mar/19
a_n =∫_0 ^1 nx(1−x^2 )^n dx  y=1−x^2 ⇒dy=−2xdx⇒xdx=−(dy/2)  x=0⇒y=1  x=1⇒y=0  a_n =n∫_0 ^1 (1−x^2 )^n xdx=−(n/2)∫_1 ^0 y^n dy=(n/2)∫_0 ^1 y^n dy  =(n/(2(n+1)))  lim_(n→∞) sin [((πn)/(2(n+1)))]=sin ((π/2)lim_(n→∞) (n/(n+1)))=sin (π/2)=1
an=10nx(1x2)ndxy=1x2dy=2xdxxdx=dy2x=0y=1x=1y=0an=n10(1x2)nxdx=n201yndy=n210yndy=n2(n+1)limsinn[πn2(n+1)]=sin(π2limnnn+1)=sinπ2=1

Leave a Reply

Your email address will not be published. Required fields are marked *