Menu Close

For-every-positive-real-number-x-let-g-x-lim-r-0-x-1-r-1-x-r-1-1-r-Find-lim-x-g-x-x-




Question Number 162521 by HongKing last updated on 30/Dec/21
For every positive real number x , let  g(x) =lim_(r→0)  ((x+1)^(r+1)  - x^(r+1) )^(1/r)   Find:  lim_(x→∞)  ((g(x))/x)
$$\mathrm{For}\:\mathrm{every}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{number}\:\boldsymbol{\mathrm{x}}\:,\:\mathrm{let} \\ $$$$\mathrm{g}\left(\mathrm{x}\right)\:=\underset{\boldsymbol{\mathrm{r}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\left(\mathrm{x}+\mathrm{1}\right)^{\boldsymbol{\mathrm{r}}+\mathrm{1}} \:-\:\mathrm{x}^{\boldsymbol{\mathrm{r}}+\mathrm{1}} \right)^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{r}}}} \\ $$$$\mathrm{Find}:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{g}\left(\mathrm{x}\right)}{\mathrm{x}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *