Menu Close

for-every-real-number-a-b-such-that-a-2-b-2-4a-6b-2-what-is-the-maximum-and-minimum-value-of-the-expression-a-2-b-2-8a-10b-41-




Question Number 79404 by jagoll last updated on 25/Jan/20
for every real number a , b   such that a^2 +b^2 −4a−6b=2.   what is the maximum and   minimum value of the   expression   (√(a^2 +b^2 −8a−10b+41)) ?
foreveryrealnumbera,bsuchthata2+b24a6b=2.whatisthemaximumandminimumvalueoftheexpressiona2+b28a10b+41?
Commented by john santu last updated on 25/Jan/20
let f=(√(a^2 +b^2 −4a−6b−(4a+4b)+41))  f=(√(43−(4a+4b))) . That the   value of f will be maximum   if  4a+4b is minimum.  let : 4x+4y= l , this is the tangent   of circle (a−2)^2 +(b−3)^2 =15  d= ((∣8+12−l∣)/(4(√2))), d=r  4(√(30)) = ∣20−l∣   20−l = ±4(√(30)) ⇒l= 20±4(√(30))  (i) l=20+4(√(30))   f=(√(43−(20+4(√(30))))) =(√(23−2(√(120))))   = (√(15))−2(√2)   (ii) l= 20−4(√(30))   f=(√(43−(20−4(√(30))))) =(√(15))+2(√2)  ∴ f_(max)  = (√(15))+2(√2)  f_(min) =(√(15)) −2(√2)
letf=a2+b24a6b(4a+4b)+41f=43(4a+4b).Thatthevalueoffwillbemaximumif4a+4bisminimum.let:4x+4y=l,thisisthetangentofcircle(a2)2+(b3)2=15d=8+12l42,d=r430=20l20l=±430l=20±430(i)l=20+430f=43(20+430)=232120=1522(ii)l=20430f=43(20430)=15+22fmax=15+22fmin=1522
Commented by jagoll last updated on 25/Jan/20
great! sir thank you
great!sirthankyou
Commented by peter frank last updated on 25/Jan/20
great
great
Commented by john santu last updated on 25/Jan/20
thanks sir
thankssir

Leave a Reply

Your email address will not be published. Required fields are marked *