Menu Close

For-pi-lt-2pi-given-P-1-2-cos-1-4-sin-2-1-8-cos-3-1-16-sin-4-1-32-cos-5-1-64-sin-6-1-128-cos-7-Q-1-1-2-sin-1-4-cos-2-1-8-sin-3-1-16-cos-4-1-32-sin-5-1-




Question Number 43792 by gunawan last updated on 15/Sep/18
For π≤θ<2π  given   P=(1/2)cos θ−(1/4)sin 2θ−(1/8)cos 3θ+(1/(16))sin 4θ+(1/(32))cos 5θ  −(1/(64))sin 6θ−(1/(128))cos 7θ+…  Q=1−(1/2)sin θ−(1/4)cos  2θ+(1/8)sin  3θ+(1/(16))cos  4θ−(1/(32))sin  5θ  −(1/(64))cos 6θ+(1/(128))sin 7θ+...  so (P/Q)=((2(√7))/7). After sin θ=−(m/n), where m and n  prime relatif. The value m+n is…
$$\mathrm{For}\:\pi\leqslant\theta<\mathrm{2}\pi \\ $$$$\mathrm{given}\: \\ $$$$\mathrm{P}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\theta−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\:\mathrm{2}\theta−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{cos}\:\mathrm{3}\theta+\frac{\mathrm{1}}{\mathrm{16}}\mathrm{sin}\:\mathrm{4}\theta+\frac{\mathrm{1}}{\mathrm{32}}\mathrm{cos}\:\mathrm{5}\theta \\ $$$$−\frac{\mathrm{1}}{\mathrm{64}}\mathrm{sin}\:\mathrm{6}\theta−\frac{\mathrm{1}}{\mathrm{128}}\mathrm{cos}\:\mathrm{7}\theta+\ldots \\ $$$$\mathrm{Q}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\:\theta−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{cos}\:\:\mathrm{2}\theta+\frac{\mathrm{1}}{\mathrm{8}}\mathrm{sin}\:\:\mathrm{3}\theta+\frac{\mathrm{1}}{\mathrm{16}}\mathrm{cos}\:\:\mathrm{4}\theta−\frac{\mathrm{1}}{\mathrm{32}}\mathrm{sin}\:\:\mathrm{5}\theta \\ $$$$−\frac{\mathrm{1}}{\mathrm{64}}\mathrm{cos}\:\mathrm{6}\theta+\frac{\mathrm{1}}{\mathrm{128}}\mathrm{sin}\:\mathrm{7}\theta+… \\ $$$$\mathrm{so}\:\frac{\mathrm{P}}{\mathrm{Q}}=\frac{\mathrm{2}\sqrt{\mathrm{7}}}{\mathrm{7}}.\:\mathrm{After}\:\mathrm{sin}\:\theta=−\frac{\mathrm{m}}{\mathrm{n}},\:\mathrm{where}\:\mathrm{m}\:\mathrm{and}\:\mathrm{n} \\ $$$$\mathrm{prime}\:\mathrm{relatif}.\:\mathrm{The}\:\mathrm{value}\:\mathrm{m}+\mathrm{n}\:\mathrm{is}\ldots \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *