Menu Close

for-t-gt-0-and-f-t-4pit-n-2-e-x-2-4t-prove-that-R-f-t-x-dx-1-t-gt-0-




Question Number 29028 by abdo imad last updated on 03/Feb/18
for t>0  and f(t)= (4πt)^(−(n/2))   e^(−(x^2 /(4t)))    prove that  ∫_R f_t (x)dx=1   ∀t>0.
$${for}\:{t}>\mathrm{0}\:\:{and}\:{f}\left({t}\right)=\:\left(\mathrm{4}\pi{t}\right)^{−\frac{{n}}{\mathrm{2}}} \:\:{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}{t}}} \:\:\:{prove}\:{that} \\ $$$$\int_{{R}} {f}_{{t}} \left({x}\right){dx}=\mathrm{1}\:\:\:\forall{t}>\mathrm{0}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *