for-Tawa-an-old-problem-explained-1-x-y-z-2-x-2-y-2-z-2-3-x-3-y-3-z-3-are-given-4-x-4-y-4-z-4-p-5-x-5-y-5-z-5-q-find-p-q-we-could-try-to-solve-the-system-b Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 64797 by MJS last updated on 21/Jul/19 forTawa,anoldproblemexplained(1)x+y+z=α(2)x2+y2+z2=β(3)x3+y3+z3=γα,β,γaregiven(4)x4+y4+z4=p(5)x5+y5+z5=qfindp,qwecouldtrytosolvethesystembutit′shardtoexactlysolveitandthencalculatethesumsofthe4thand5thpowers.instead,let′sthinkoftheshapeofthesolutionsofapolynomeof3rddegree.theymightlooklikethis:t1=at2=b−ct3=b+clet′stryit!x=ay=b−cz=b+c⇒(1)a+2b=α(2)a2+2b2+2c=β(3)a3+2b3+6bc=γ(4)a4+2b4+12b2c+2c2−p=0(5)a5+2b5+20b3c+10bc2−q=0doesn′tlookthatbad.wecaneasilysolveequation(1)foraandequation(2)forc(1)a=α−2b(2)c=−a22−b2+β2=[using(1)]−3b2+2αb−α22+β2nowlet′sinsertthesein(3),(4)and(5)(3)−24b3+24αb2−3(3α2−β)b+α3−γ=0(4)−32αb3+32α2b2−4α(3α2−β)b+3α42−α2β+β22−p=0(5)−20(α2+β)b3+20α(α2+β)b2−52(3α4+2α2β−β2)b+α5−q=0dividingbytheconstantfactorsofb2(3)b3−αb2+3α2−β8b−α3−γ24=0(4)b3−αb2+3α2−β8b+2p−3α4+2α2β−β264α=0(5)b3−αb2+3α2−β8b+q−α520(α2+β)=0onlytheredfactorsdiffer⇒theymusthavethesamevalues!⇒−α3−γ24=2p−3α4+2α2β−β264α=q−α520(α2+β)⇒p=α46−α2β+4αγ3+β22q=α56−5α3β6+5α2γ6+5βγ6solvedwithoutsolvingthesameideaistrivialfor2equationsx+y=αx2+y2=βxn+yn=pwithn>2∧n∈Nputx=a−by=a+b⇒2a=α2a2+2b=β⇒a=α2b=β2−α24wemightaswellsolvethesystemandfor4equationsunfortunatelywemustsolvethesystemw+x+y+z=αw2+x2+y2+z2=βw3+x3+y3+z3=γw4+x4+y4+z4=δbutitstillmakesiteasiertosolveputtingw=a−bx=a+by=c−bz=c+d Commented by Tawa1 last updated on 21/Jul/19 Wow,great,youarehelpingmemore,Godwillhelpyoumoretooinnoparticularorder,.SirMjs,SirMrW,sirTanmay,matabodoandeveryotherpersonhere.Godblesseveryonehereandmetoo.Hahahaha. Commented by Tawa1 last updated on 25/Jul/19 Godblessyousir Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19 letconsiderP(t)=(t−x)(t−y)(t−z)andun=xn+yn+znByreducingP(t)=t3+at2+bt+cwitha=−(x+y+z)b=xy+xz+yzc=−xyzwecaneasilyprovethatun+3+aun+2+bun+1+cun=xnP(x)+ynP(y)+znP(z)=0(∗)Thenu4=−au3−bu2−cu1u5=−au4−bu3−cu2Sowejuztneedtoprovethatabcareknownandfindthema=−α(x+y+z)2=x2+y2+z2+2(xy+xz+yz)⇒b=12(u12−u2)=12(α2−β)(x+y+z)3=(x+y)3+3z(x+y)(x+y+z)+z3=x3+3xy(x+y)+y3+3α(xz+zy)+z3=u3+3xy(α−z)+3α(zx+zy)=u3+3αb−3xyzwegetc=−xyz=13(u13−u3−3αb)=13[α3−γ−3α(α2−β2)]=13[3αβ2−α32−γ]asabcareknownandfoundwecaneasilyfindun∀n>4byusingtheegality(∗) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: f-x-ax-3-bx-2-c-f-x-3ax-2-2bx-f-0-2-a-0-3-b-0-2-c-2-c-2-f-2-2-f-2-0-a-2-3-b-2-2-2-2-3a-2-2-2b-2-0-8a-4b-4-12a-4b-0-8a-12a-4b-4b-4-4a-Next Next post: x-2-4x-3-x-2-6x-4-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.