Menu Close

for-Tawa-an-old-problem-explained-1-x-y-z-2-x-2-y-2-z-2-3-x-3-y-3-z-3-are-given-4-x-4-y-4-z-4-p-5-x-5-y-5-z-5-q-find-p-q-we-could-try-to-solve-the-system-b




Question Number 64797 by MJS last updated on 21/Jul/19
for Tawa, an old problem explained  (1)  x+y+z=α  (2)  x^2 +y^2 +z^2 =β  (3)  x^3 +y^3 +z^3 =γ  α, β, γ are given    (4)  x^4 +y^4 +z^4 =p  (5)  x^5 +y^5 +z^5 =q  find p, q    we could try to solve the system but it′s hard  to exactly solve it and then calculate the  sums of the 4^(th)  and 5^(th)  powers.  instead, let′s think of the shape of the  solutions of a polynome of 3^(rd)  degree. they  might look like this:  t_1 =a  t_2 =b−(√c)  t_3 =b+(√c)  let′s try it!    x=a  y=b−(√c)  z=b+(√c)  ⇒  (1)  a+2b=α  (2)  a^2 +2b^2 +2c=β  (3)  a^3 +2b^3 +6bc=γ    (4)  a^4 +2b^4 +12b^2 c+2c^2 −p=0  (5)  a^5 +2b^5 +20b^3 c+10bc^2 −q=0    doesn′t look that bad. we can easily solve  equation (1) for a and equation (2) for c  (1)  a=α−2b  (2)  c=−(a^2 /2)−b^2 +(β/2)=^([using (1)]) −3b^2 +2αb−(α^2 /2)+(β/2)  now let′s insert these in (3), (4) and (5)  (3)  −24b^3 +24αb^2 −3(3α^2 −β)b+α^3 −γ=0  (4)  −32αb^3 +32α^2 b^2 −4α(3α^2 −β)b+((3α^4 )/2)−α^2 β+(β^2 /2)−p=0  (5)  −20(α^2 +β)b^3 +20α(α^2 +β)b^2 −(5/2)(3α^4 +2α^2 β−β^2 )b+α^5 −q=0  dividing by the constant factors of b^2   (3)  b^3 −αb^2 +((3α^2 −β)/8)b−((α^3 −γ)/(24))=0  (4)  b^3 −αb^2 +((3α^2 −β)/8)b+((2p−3α^4 +2α^2 β−β^2 )/(64α))=0  (5)  b^3 −αb^2 +((3α^2 −β)/8)b+((q−α^5 )/(20(α^2 +β)))=0  only the red factors differ ⇒ they must have  the same values!  ⇒ −((α^3 −γ)/(24))=((2p−3α^4 +2α^2 β−β^2 )/(64α))=((q−α^5 )/(20(α^2 +β)))  ⇒  p=(α^4 /6)−α^2 β+((4αγ)/3)+(β^2 /2)  q=(α^5 /6)−((5α^3 β)/6)+((5α^2 γ)/6)+((5βγ)/6)  solved without solving    the same idea is trivial for 2 equations  x+y=α  x^2 +y^2 =β  x^n +y^n =p with n>2∧n∈N  put x=a−(√b)  y=a+(√b)  ⇒  2a=α  2a^2 +2b=β  ⇒ a=(α/2)  b=(β/2)−(α^2 /4)  we might as well solve the system    and for 4 equations unfortunately we must  solve the system  w+x+y+z=α  w^2 +x^2 +y^2 +z^2 =β  w^3 +x^3 +y^3 +z^3 =γ  w^4 +x^4 +y^4 +z^4 =δ  but it still makes it easier to solve putting  w=a−(√b)  x=a+(√b)  y=c−(√b)  z=c+(√d)
forTawa,anoldproblemexplained(1)x+y+z=α(2)x2+y2+z2=β(3)x3+y3+z3=γα,β,γaregiven(4)x4+y4+z4=p(5)x5+y5+z5=qfindp,qwecouldtrytosolvethesystembutitshardtoexactlysolveitandthencalculatethesumsofthe4thand5thpowers.instead,letsthinkoftheshapeofthesolutionsofapolynomeof3rddegree.theymightlooklikethis:t1=at2=bct3=b+cletstryit!x=ay=bcz=b+c(1)a+2b=α(2)a2+2b2+2c=β(3)a3+2b3+6bc=γ(4)a4+2b4+12b2c+2c2p=0(5)a5+2b5+20b3c+10bc2q=0doesntlookthatbad.wecaneasilysolveequation(1)foraandequation(2)forc(1)a=α2b(2)c=a22b2+β2=[using(1)]3b2+2αbα22+β2nowletsinsertthesein(3),(4)and(5)(3)24b3+24αb23(3α2β)b+α3γ=0(4)32αb3+32α2b24α(3α2β)b+3α42α2β+β22p=0(5)20(α2+β)b3+20α(α2+β)b252(3α4+2α2ββ2)b+α5q=0dividingbytheconstantfactorsofb2(3)b3αb2+3α2β8bα3γ24=0(4)b3αb2+3α2β8b+2p3α4+2α2ββ264α=0(5)b3αb2+3α2β8b+qα520(α2+β)=0onlytheredfactorsdiffertheymusthavethesamevalues!α3γ24=2p3α4+2α2ββ264α=qα520(α2+β)p=α46α2β+4αγ3+β22q=α565α3β6+5α2γ6+5βγ6solvedwithoutsolvingthesameideaistrivialfor2equationsx+y=αx2+y2=βxn+yn=pwithn>2nNputx=aby=a+b2a=α2a2+2b=βa=α2b=β2α24wemightaswellsolvethesystemandfor4equationsunfortunatelywemustsolvethesystemw+x+y+z=αw2+x2+y2+z2=βw3+x3+y3+z3=γw4+x4+y4+z4=δbutitstillmakesiteasiertosolveputtingw=abx=a+by=cbz=c+d
Commented by Tawa1 last updated on 21/Jul/19
Wow, great, you are helping me more, God will help you more too  in no particular order,  .Sir Mjs,  Sir MrW,  sir Tanmay,  matabodo  and every other person here.  God bless everyone here and me too. Hahahaha.
Wow,great,youarehelpingmemore,Godwillhelpyoumoretooinnoparticularorder,.SirMjs,SirMrW,sirTanmay,matabodoandeveryotherpersonhere.Godblesseveryonehereandmetoo.Hahahaha.
Commented by Tawa1 last updated on 25/Jul/19
God bless you sir
Godblessyousir
Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19
      let consider  P(t)=(t−x)(t−y)(t−z)   and  u_n =x^n +y^n +z^n   By  reducing P (t)=t^3 +at^2 +bt^ +c    with a=−(x+y+z)  b=xy+xz+yz     c=−xyz  we can easily prove that   u_(n+3) +au_(n+2) +bu_(n+1) +cu_n =x^n P(x)+y^n P(y)+z^n P(z)=0   (∗)  Then  u_4 =−au_3 −bu_2 −cu_(1    )   u_5 =−au_4 −bu_3 −cu_2   So  we juzt need to prove that a b c are known and find them  a=−α           (x+y+z)^2 =x^2 +y^2 +z^2 +2(xy+xz+yz) ⇒ b=(1/2)(u_1 ^2 −u_2 )=(1/2)(α^2 −β)  (x+y+z)^3 = (x+y)^3 +3z(x+y)(x+y+z)+z^3               =x^3 +3xy(x+y)+y^3 +3α(xz+zy)+z^3               =u_3 +3xy(α−z)+3α(zx+zy)=u_3 +3αb−3xyz  we get  c=−xyz =(1/3)(u_1 ^3 −u_3 −3αb)=(1/3)[α^3 −γ−3α(((α^2 −β)/2))]=(1/3)[((3αβ)/2)−(α^3 /2)−γ]  as a  b c are known and found we can easily find u_(n )  ∀ n>4 by using the egality (∗)
letconsiderP(t)=(tx)(ty)(tz)andun=xn+yn+znByreducingP(t)=t3+at2+bt+cwitha=(x+y+z)b=xy+xz+yzc=xyzwecaneasilyprovethatun+3+aun+2+bun+1+cun=xnP(x)+ynP(y)+znP(z)=0()Thenu4=au3bu2cu1u5=au4bu3cu2Sowejuztneedtoprovethatabcareknownandfindthema=α(x+y+z)2=x2+y2+z2+2(xy+xz+yz)b=12(u12u2)=12(α2β)(x+y+z)3=(x+y)3+3z(x+y)(x+y+z)+z3=x3+3xy(x+y)+y3+3α(xz+zy)+z3=u3+3xy(αz)+3α(zx+zy)=u3+3αb3xyzwegetc=xyz=13(u13u33αb)=13[α3γ3α(α2β2)]=13[3αβ2α32γ]asabcareknownandfoundwecaneasilyfindunn>4byusingtheegality()

Leave a Reply

Your email address will not be published. Required fields are marked *