Menu Close

for-v-y-x-v-R-2-v-has-basis-vectors-i-and-j-Assume-we-apply-a-basis-transform-to-obtain-new-basis-vectors-i-and-j-What-is-the-new-v-




Question Number 13942 by FilupS last updated on 25/May/17
for  v= [(y),(x) ],    v∈R^2   v has basis vectors i^�  and j^�      Assume we apply a basis transform to  obtain new basis vectors i^� ′ and j^� ′     What is the new v′?
for\boldsymbolv=[yx],\boldsymbolvR2\boldsymbolvhasbasisvectorsi^andj^Assumeweapplyabasistransformtoobtainnewbasisvectorsi^andj^Whatisthenew\boldsymbolv?
Answered by ajfour last updated on 25/May/17
v′= [((y′)),((x′)) ]= [((i^� .j^� ′),(j^� .j^� ′)),((i^� .i^� ′),(j^� .i^� ′)) ] [(y),(x) ]  (may be..).
\boldsymbolv=[yx]=[i^.j^j^.j^i^.i^j^.i^][yx](maybe..).
Commented by FilupS last updated on 26/May/17
 [((i^� .j^� ′),(j^� .j^� ′)),((i^� .i^� ′),(j^� .i^� ′)) ]  I have a feeling this is incorrect     I don′t remember, but I think it should  be something like   [(i^� ,(i^� ′)),(j^� ,(j^� ′)) ]
[i^.j^j^.j^i^.i^j^.i^]IhaveafeelingthisisincorrectIdontremember,butIthinkitshouldbesomethinglike[i^i^j^j^]

Leave a Reply

Your email address will not be published. Required fields are marked *