Question Number 20308 by Tinkutara last updated on 25/Aug/17
$$\mathrm{For}\:\mathrm{what}\:\mathrm{value}\:\mathrm{of}\:{k},\:\left({x}\:+\:{y}\:+\:{z}\right)^{\mathrm{2}} \:+ \\ $$$${k}\left({x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \right)\:\mathrm{can}\:\mathrm{be}\:\mathrm{resolved}\:\mathrm{into} \\ $$$$\mathrm{linear}\:\mathrm{rational}\:\mathrm{factors}? \\ $$
Answered by Tinkutara last updated on 28/Aug/17
$$\left({x}+{y}+{z}\right)^{\mathrm{2}} +{k}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right) \\ $$$$={x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +\mathrm{2}{xy}+\mathrm{2}{yz}+\mathrm{2}{zx}+{k}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \right) \\ $$$$={z}^{\mathrm{2}} \left[\left(\frac{{x}}{{z}}\right)^{\mathrm{2}} +\left(\frac{{y}}{{z}}\right)^{\mathrm{2}} +\mathrm{1}+\frac{\mathrm{2}{xy}}{{z}^{\mathrm{2}} }+\frac{\mathrm{2}{y}}{{z}}+\frac{\mathrm{2}{x}}{{z}}+{k}\left(\frac{{x}}{{z}}\right)^{\mathrm{2}} +{k}\left(\frac{{y}}{{z}}\right)^{\mathrm{2}} +{k}\right] \\ $$$$={z}^{\mathrm{2}} \left[{X}^{\mathrm{2}} +{Y}^{\mathrm{2}} +\mathrm{1}+\mathrm{2}{XY}+\mathrm{2}{Y}+\mathrm{2}{X}+{kX}^{\mathrm{2}} +{kY}^{\mathrm{2}} +{k}\right] \\ $$$$={z}^{\mathrm{2}} \left[\left({k}+\mathrm{1}\right){X}^{\mathrm{2}} +\left({k}+\mathrm{1}\right){Y}^{\mathrm{2}} +\mathrm{2}{XY}+\mathrm{2}{Y}+\mathrm{2}{X}+\left({k}+\mathrm{1}\right)\right] \\ $$$$\Delta=\left({k}+\mathrm{1}\right)\left({k}+\mathrm{1}\right)\left({k}+\mathrm{1}\right)+\mathrm{2}\left(\mathrm{1}\right)−\left({k}+\mathrm{1}\right)−\left({k}+\mathrm{1}\right)−\left({k}+\mathrm{1}\right)=\mathrm{0} \\ $$$$=\left({k}+\mathrm{1}\right)^{\mathrm{3}} −\mathrm{3}\left({k}+\mathrm{1}\right)+\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow{k}=\mathrm{0},−\mathrm{3} \\ $$
Commented by ajfour last updated on 28/Aug/17
$${Find}\:{the}\:{coefficients}\:{if}\:{k}=−\mathrm{3}\:. \\ $$