for-what-value-of-x-0-lt-x-lt-2-4cosec-2-x-9-cotx- Tinku Tara June 4, 2023 Trigonometry 0 Comments FacebookTweetPin Question Number 98191 by behi83417@gmail.com last updated on 12/Jun/20 forwhatvalueof:{x∣0<x<2π}:4cosec2x−9=cotx Answered by MJS last updated on 12/Jun/20 4cosec2x−9=cotx9sin2x+sinxcosx−4=09cos2x−sin2x−1=0x=arctant−10t2+2t−8t2+1=0t2+15t−45=0t1=−1;t2=45⇒x1.1=3π4;x1.2=7π4;x2.1=arctan45;x2.2=π+arctan45 Answered by 1549442205 last updated on 12/Jun/20 wehave4sin2x−9=cosxsinx⇔4(1+cot2x)−9=cotx4cot2x−cotx−5=0⇔(cotx+1)(4cotx−5)=0a/cotx+1=0⇔cotx=−1=cot3π4⇒x∈{3π4;7π4}a/4cotx−5=0⇔cotx=54⇔tanx=45⇒x∈{arctan45;arctan45+π}Thus,therootsininterval[0;2π]ofgivenequationare:x∈{3π4;7π4;arctan45;arctan45+π} Commented by behi83417@gmail.com last updated on 12/Jun/20 thankyouverymuchsir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-163727Next Next post: Question-98190 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.