Menu Close

for-what-value-of-x-0-lt-x-lt-2-4cosec-2-x-9-cotx-




Question Number 98191 by behi83417@gmail.com last updated on 12/Jun/20
for what value of :{x∣ 0<x<2𝛑}:            4cosec^2 x−9=cotx
forwhatvalueof:{x0<x<2π}:4cosec2x9=cotx
Answered by MJS last updated on 12/Jun/20
4cosec^2  x −9=cot x  9sin^2  x +sin x cos x −4=0  9cos 2x −sin 2x −1=0  x=arctan t  −((10t^2 +2t−8)/(t^2 +1))=0  t^2 +(1/5)t−(4/5)=0  t_1 =−1; t_2 =(4/5)  ⇒  x_(1.1) =((3π)/4); x_(1.2) =((7π)/4); x_(2.1) =arctan (4/5); x_(2.2) =π+arctan (4/5)
4cosec2x9=cotx9sin2x+sinxcosx4=09cos2xsin2x1=0x=arctant10t2+2t8t2+1=0t2+15t45=0t1=1;t2=45x1.1=3π4;x1.2=7π4;x2.1=arctan45;x2.2=π+arctan45
Answered by 1549442205 last updated on 12/Jun/20
we have (4/(sin^2 x))−9=((cosx)/(sinx))⇔4(1+cot^2 x)−9=cotx  4cot^2 x−cotx−5=0⇔(cotx+1)(4cotx−5)=0  a/cotx+1=0⇔cot x=−1=cot((3π)/4)⇒x∈{((3π)/4);((7π)/4)}  a/4cotx−5=0⇔cotx=(5/4)⇔tanx=(4/5)   ⇒x∈{arctan(4/5);arctan(4/5)+π}  Thus,the roots in interval [0;2π] of   given equation are:x∈{((3π)/4);((7π)/4);arctan(4/5);arctan(4/5)+π}
wehave4sin2x9=cosxsinx4(1+cot2x)9=cotx4cot2xcotx5=0(cotx+1)(4cotx5)=0a/cotx+1=0cotx=1=cot3π4x{3π4;7π4}a/4cotx5=0cotx=54tanx=45x{arctan45;arctan45+π}Thus,therootsininterval[0;2π]ofgivenequationare:x{3π4;7π4;arctan45;arctan45+π}
Commented by behi83417@gmail.com last updated on 12/Jun/20
thank you very much sir.
thankyouverymuchsir.

Leave a Reply

Your email address will not be published. Required fields are marked *