Menu Close

For-what-values-of-a-and-b-will-the-integral-a-b-10-x-x-2-dx-be-at-maximum-




Question Number 63372 by necx1 last updated on 03/Jul/19
For what values of a and b will the  integral ∫_a ^b (√(10−x−x^2 ))dx be at  maximum
Forwhatvaluesofaandbwilltheintegralab10xx2dxbeatmaximum
Commented by mr W last updated on 03/Jul/19
y=(√(10−x−x^2 ))=(√((((√(41))/2))^2 −(x+(1/2))^2 ))  this is a semicircle with radius ((√(41))/2) and  center (−(1/2),0)  max. value of integral is the area  of semicircle, i.e.  a=−(1/2)−((√(41))/2)  b=−(1/2)+((√(41))/2)  max. I=(π/2)(((√(41))/2))^2 =((41π)/8)
y=10xx2=(412)2(x+12)2thisisasemicirclewithradius412andcenter(12,0)max.valueofintegralistheareaofsemicircle,i.e.a=12412b=12+412max.I=π2(412)2=41π8
Commented by mathmax by abdo last updated on 03/Jul/19
let f(a,b) =∫_a ^b (√(10−x−x^2 ))dx ⇒f(a,b) =∫_a ^b (√(−(x^2 +x−10)))dx  =∫_a ^b (√(−( x^2 +2x(1/2)+(1/4)−(1/4)−10)))dx =∫_a ^b (√(−(x+(1/2))^2 +(1/4)+10))dx  =∫_a ^b (√(((41)/4)−(x+(1/2))^2 ))dx   changement  x+(1/2)=((√(41))/2)sint give  f(a,b) =∫_((2a+1)/( (√(41)))) ^((2b+1)/( (√(41))))   ((√(41))/2) (√(1−sin^2 t))((√(41))/2)cost dt  =((41)/4) ∫_((2a+1)/( (√(41)))) ^((2b+1)/( (√(41))))   cos^2 t dt =((41)/8) ∫_((2a+1)/( (√(41)))) ^((2b+1)/( (√(41))))    (1+cos(2t))dt  =((41)/8){((2b+1)/( (√(41)))) −((2a+1)/( (√(41))))} +((41)/(16)) [sin(2t)]_((2a+1)/( (√(41)))) ^((2b+1)/( (√(41))))   =((√(41))/4)(b−a) +((41)/(16)){ sin(((4b+2)/( (√(41)))))−sin(((4a+2)/( (√(41)))))}  let suppose b≥a  (b fixed)  (∂f/∂a)(a,b) =−((√(41))/4) −((41)/(16)) (4/( (√(41)))) cos(((4a+2)/( (√(41))))) =−((√(41))/4) −((√(41))/4) cos(((4a+2)/( (√(41)))))  =−((√(41))/4){ 1+cos(((4a+2)/( (√(41)))))} =0 ⇒cos(((4a+2)/( (√(41)))))=cos(π) ⇒  ((4a+2)/( (√(41)))) =π +2kπ  or   ((4a+2)/( (√(41)))) =−π +2kπ ⇒  4a+2 =(√(41))(2k+1)π  or   4a+2 =(√(41))(2k−1)π ⇒  a =(((√(41))(2k+1)π−2)/4) or   a =(((√(41))(2k−1)π −2)/4)        (k ∈Z)  rest to dresz the   variation of f(a,b).....be continued...
letf(a,b)=ab10xx2dxf(a,b)=ab(x2+x10)dx=ab(x2+2x12+141410)dx=ab(x+12)2+14+10dx=ab414(x+12)2dxchangementx+12=412sintgivef(a,b)=2a+1412b+1414121sin2t412costdt=4142a+1412b+141cos2tdt=4182a+1412b+141(1+cos(2t))dt=418{2b+1412a+141}+4116[sin(2t)]2a+1412b+141=414(ba)+4116{sin(4b+241)sin(4a+241)}letsupposeba(bfixed)fa(a,b)=4144116441cos(4a+241)=414414cos(4a+241)=414{1+cos(4a+241)}=0cos(4a+241)=cos(π)4a+241=π+2kπor4a+241=π+2kπ4a+2=41(2k+1)πor4a+2=41(2k1)πa=41(2k+1)π24ora=41(2k1)π24(kZ)resttodreszthevariationoff(a,b)..becontinued
Answered by MJS last updated on 03/Jul/19
F(x)=∫(√(10−x−x^2 ))dx  ∫_a ^b (√(10−x−x^2 ))dx=F(b)−F(a)  the maximum for a is at  (d/da)[F(b)−F(a)]=(√(10−a−a^2 ))=0 ⇒ a=−(1/2)±((√(41))/2)  the maximum for b is similar at  b=−(1/2)±((√(41))/2)  b>a ⇒ a=−(1/2)−((√(41))/2)∧b=−(1/2)+((√(41))/2)
F(x)=10xx2dxba10xx2dx=F(b)F(a)themaximumforaisatdda[F(b)F(a)]=10aa2=0a=12±412themaximumforbissimilaratb=12±412b>aa=12412b=12+412

Leave a Reply

Your email address will not be published. Required fields are marked *