Menu Close

For-what-values-of-p-the-integral-0-1-x-p-ln-x-dx-converge-




Question Number 55856 by Joel578 last updated on 05/Mar/19
For what values of p the integral  ∫_0 ^1  x^p  ln x dx  converge?
Forwhatvaluesofptheintegral01xplnxdxconverge?
Commented by maxmathsup by imad last updated on 05/Mar/19
let  A_p =∫_0 ^1   x^p ln(x)dx  changement ln(x)=−t give  x =e^(−t)   A_p =−∫_0 ^∞ (e^(−t) )^p  (t) e^(−t)  dt =−∫_0 ^∞   t e^(−(p+1)t) dt  if p>−1   A_p  converges    if p≤−1   lim_(t→+∞) t e^(−(p+1)t)  =+∞ ⇒A_p diverges
letAp=01xpln(x)dxchangementln(x)=tgivex=etAp=0(et)p(t)etdt=0te(p+1)tdtifp>1Apconvergesifp1limt+te(p+1)t=+Apdiverges
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Mar/19
lnx×(x^(p+1) /(p+1))−∫(1/x)×(x^(p+1) /(p+1))dx  ∣((x^(p+1) lnx)/(p+1))−(1/(p+1))×(x^(p+1) /(p+1))∣_0 ^1   =((1×0)/(p+1))−(1/((p+1)^2 ))  =((−1)/((p+1)^2 ))    p≠−1  so i think value of p is R−{−1}   pls check
lnx×xp+1p+11x×xp+1p+1dxxp+1lnxp+11p+1×xp+1p+101=1×0p+11(p+1)2=1(p+1)2p1soithinkvalueofpisR{1}plscheck
Commented by tanmay.chaudhury50@gmail.com last updated on 05/Mar/19
thank you sir...is my answer correct...
thankyousirismyanswercorrect
Commented by Joel578 last updated on 05/Mar/19
Sir I think p should be ≤ −1  I =lim_(t→0^+ )  [((x^(p+1) (ln x))/(p + 1)) − (x^(p+1) /((p + 1)^2 ))]_t ^1   ⇒ lim_(t→0^+ )  {(0 − (1/((p + 1)^2 ))) − (((t^(p+1) (ln t))/(p + 1)) − (t^(p+1) /((p + 1)^2 )))}  ⇒ − (1/((p + 1)^2 )) − lim_(t→0^+ )  {(t^(p+1) /(p + 1))(ln t − (1/(p + 1)))}  when p + 1 = 0 ⇔ p = −1, I diverge  when p + 1 < 0 ⇔ p < − 1, (p + 1) is negative,  which mean   t^(p+1)  → ∞  as  t → 0^+ .   Hence I = −(1/((p + 1)^2 )) − ∞ = −∞ (diverge)
SirIthinkpshouldbe1I=limt0+[xp+1(lnx)p+1xp+1(p+1)2]t1limt0+{(01(p+1)2)(tp+1(lnt)p+1tp+1(p+1)2)}1(p+1)2limt0+{tp+1p+1(lnt1p+1)}whenp+1=0p=1,Idivergewhenp+1<0p<1,(p+1)isnegative,whichmeantp+1ast0+.HenceI=1(p+1)2=(diverge)
Commented by Joel578 last updated on 05/Mar/19
please correct if I am wrong
pleasecorrectifIamwrong

Leave a Reply

Your email address will not be published. Required fields are marked *