Menu Close

For-witch-value-of-the-integral-I-0-1-1-2x-2-1-x-dx-converge-and-in-this-case-calculate-




Question Number 79869 by Henri Boucatchou last updated on 28/Jan/20
For  witch  value  of  α  the  integral    I=∫_0 ^∞ ((1/( (√(1+2x^2 ))))−(α/(1+x)))dx  converge;    and  in  this  case  calculate  α
ForwitchvalueofαtheintegralI=0(11+2x2α1+x)dxconverge;andinthiscasecalculateα
Commented by mathmax by abdo last updated on 29/Jan/20
let a>0  we have I =∫_0 ^a  ((1/( (√(1+2x^2 ))))−(α/(1+x)))dx +∫_a ^(+∞) ((1/( (√(1+2x^2 ))))−(α/(1+x)))dx  the gunction x→(1/( (√(1+2x^2 ))))−(α/(1+x)) is continue on [0,a] ⇒  integrable on[0,a] ∀α  now let look what happend on +∞!  we have  (1/( (√(1+2x^2 ))))−(α/(1+x)) =(1/(x(√2)((√((1/(2x^2 ))+1))))) −(α/(x(1+(1/x))))  =(1/(x(√2)))(1+(1/(2x^2 )))^(−(1/2))  −(α/(x(1+(1/x)))) ∼(1/(x(√2))){1−(1/(4x^2 ))}−(α/x)(1−(1/x))  ∼(1/x)((1/( (√2)))−α)−(1/(4(√2)x^3 )) +(α/x^2 )   so I converges ⇔(1/( (√2)))−α=0 ⇒α=(1/( (√2)))  if α≠(1/( (√2))) this integral diverges!
leta>0wehaveI=0a(11+2x2α1+x)dx+a+(11+2x2α1+x)dxthegunctionx11+2x2α1+xiscontinueon[0,a]integrableon[0,a]αnowletlookwhathappendon+!wehave11+2x2α1+x=1x2(12x2+1)αx(1+1x)=1x2(1+12x2)12αx(1+1x)1x2{114x2}αx(11x)1x(12α)142x3+αx2soIconverges12α=0α=12ifα12thisintegraldiverges!

Leave a Reply

Your email address will not be published. Required fields are marked *