Menu Close

for-x-0-let-x-x-x-1-prove-that-x-1-x-x-n-1-1-n-x-n-2-ptove-that-1-3-prove-that-0-e-x-ln-x-dx-




Question Number 33345 by prof Abdo imad last updated on 14/Apr/18
for x∈]0,+∞[ let ψ(x) = ((Γ^′ (x))/(Γ(x)))  1)prove that ψ(x) =−(1/x) −γ +x Σ_(n=1) ^∞  (1/(n(x+n)))  2)ptove that γ =−Γ^′ (1)  3) prove that ∫_0 ^∞  e^(−x) ln(x)dx =−γ .
$$\left.{for}\:{x}\in\right]\mathrm{0},+\infty\left[\:{let}\:\psi\left({x}\right)\:=\:\frac{\Gamma^{'} \left({x}\right)}{\Gamma\left({x}\right)}\right. \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:\psi\left({x}\right)\:=−\frac{\mathrm{1}}{{x}}\:−\gamma\:+{x}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}\left({x}+{n}\right)} \\ $$$$\left.\mathrm{2}\right){ptove}\:{that}\:\gamma\:=−\Gamma^{'} \left(\mathrm{1}\right) \\ $$$$\left.\mathrm{3}\right)\:{prove}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}} {ln}\left({x}\right){dx}\:=−\gamma\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *