Menu Close

for-x-0-y-0-xy-1-f-1-1-2-f-x-f-y-f-x-y-x-y-1-xy-1-find-f-x-if-possible-2-find-f-1-1-if-possible-




Question Number 49389 by behi83417@gmail.com last updated on 06/Dec/18
for x≠0,y≠0,xy≠−1,f(1)=(1/2)  f(x)+f(y)=f(x+y)+((x+y)/(1+xy))  1.find: f(x),[if possible]  2.find :f^(−1) (1),[if possible].
forx0,y0,xy1,f(1)=12f(x)+f(y)=f(x+y)+x+y1+xy1.find:f(x),[ifpossible]2.find:f1(1),[ifpossible].
Answered by kaivan.ahmadi last updated on 07/Dec/18
f(x)+f(x)=f(2x)=((2x)/(1+x^2 ))⇒  2f(x)=((2x)/(1+x^2 ))⇒f(x)=(x/(1+x^2 ))
f(x)+f(x)=f(2x)=2x1+x22f(x)=2x1+x2f(x)=x1+x2
Commented by Abdo msup. last updated on 08/Dec/18
f(x)=y ⇔x=f^(−1) (y)   f(x)=y ⇔(x/(1+x^2 )) =y ⇔x=(1+x^2 )y ⇔y +yx^2 −x =0  ⇔yx^2 −x +y =0  Δ=1−4y^2     Δ≥0 ⇔ 4y^2 ≤1 ⇔∣y∣≤(1/2)  x_1 =((1+(√(1−4y^2 )))/(2y))  and x_2 =((1−(√(1−4y^2 )))/(2y)) ⇒  f^(−1) (y) =((1 +^− (√(1−4y^2 )))/(2y))    and we see that f^(−1) (1)dont exist  ( 1∉[−(1/2) ,(1/2)])
f(x)=yx=f1(y)f(x)=yx1+x2=yx=(1+x2)yy+yx2x=0yx2x+y=0Δ=14y2Δ04y21⇔∣y∣⩽12x1=1+14y22yandx2=114y22yf1(y)=1+14y22yandweseethatf1(1)dontexist(1[12,12])
Answered by kaivan.ahmadi last updated on 07/Dec/18
f^(−1) (1) is not exist,since if (x,1)∈f then  x^2 −x+1=0 that has no root
f1(1)isnotexist,sinceif(x,1)fthenx2x+1=0thathasnoroot

Leave a Reply

Your email address will not be published. Required fields are marked *