Menu Close

For-x-gt-1-sin-1-2x-1-x-2-dx-




Question Number 37540 by rahul 19 last updated on 14/Jun/18
For x>1 ,   ∫ sin^(−1) (((2x)/(1+x^2 )))dx = ?
Forx>1,sin1(2x1+x2)dx=?
Answered by ajfour last updated on 14/Jun/18
let x=tan θ   x>1 ⇒    nπ+(π/4) < θ < nπ+(π/2)  ⇒  ((2x)/(1+x^2 )) = sin 2θ        2nπ+(π/2) <  2θ < 2nπ+π  sin^(−1) (sin 2θ) = sin^(−1) sin (π−2θ)         2mπ < π−2θ < 2mπ+(π/2)  m=0  is appropriate since        π−2θ should lie in [−(π/2), (π/2)]  sin^(−1) sin (π−2θ)= π−2θ                                    = π−2tan^(−1) x  I=∫(π−2tan^(−1) x)dx    =πx−2(xtan^(−1) x−(1/2)∫ ((2xdx)/(1+x^2 )) )+c   I=πx−2xtan^(−1) x+ln ∣1+x^2 ∣+c .
letx=tanθx>1nπ+π4<θ<nπ+π22x1+x2=sin2θ2nπ+π2<2θ<2nπ+πsin1(sin2θ)=sin1sin(π2θ)2mπ<π2θ<2mπ+π2m=0isappropriatesinceπ2θshouldliein[π2,π2]sin1sin(π2θ)=π2θ=π2tan1xI=(π2tan1x)dx=πx2(xtan1x122xdx1+x2)+cI=πx2xtan1x+ln1+x2+c.
Commented by rahul 19 last updated on 14/Jun/18
thank you sir. ����
Commented by rahul 19 last updated on 14/Jun/18
Ajfour sir pls try these ques...  Q. no. 36700 & 36096.
AjfoursirplstrythesequesQ.no.36700&36096.

Leave a Reply

Your email address will not be published. Required fields are marked *