Menu Close

For-x-y-R-find-the-minimum-and-maximum-of-2x-2-3x-4y-if-x-2-2y-2-xy-5x-7y-30-0-




Question Number 79417 by mr W last updated on 25/Jan/20
For x,y∈R find the minimum and  maximum of 2x^2 −3x+4y  if x^2 +2y^2 −xy−5x−7y−30=0.
Forx,yRfindtheminimumandmaximumof2x23x+4yifx2+2y2xy5x7y30=0.
Commented by john santu last updated on 25/Jan/20
what the answer?
whattheanswer?
Commented by mr W last updated on 25/Jan/20
it′s not worked out yet. i have only  an idea, maybe not a good one.  basically i wanted to know which  methods we can apply to solve. what′s  your suggestion sir?
itsnotworkedoutyet.ihaveonlyanidea,maybenotagoodone.basicallyiwantedtoknowwhichmethodswecanapplytosolve.whatsyoursuggestionsir?
Commented by john santu last updated on 25/Jan/20
yes sir, I also haven′t solved  it yet. with the Lagrange   multiplier method, i can′t yet
yessir,Ialsohaventsolvedityet.withtheLagrangemultipliermethod,icantyet
Answered by mr W last updated on 26/Jan/20
=== General way to solve  ===  it is to find the minimum and  maximum of the function   F(x,y)=2x^2 −3x+4y  under the condition that  G(x,y)=x^2 +2y^2 −xy−5x−7y−30=0  Using Lagrange multiplier method  L(x,y)= 2x^2 −3x+4y+λ(x^2 +2y^2 −xy−5x−7y−30)  (∂L/∂x)=4x−3+λ(2x−y−5)=0    ...(i)  (∂L/∂y)=4+λ(4y−x−7)=0   ...(ii)  (∂L/∂λ)=x^2 +2y^2 −xy−5x−7y−30=0   ...(iii)  from (i) and (ii):  ((3−4x)/(2x−y−5))=(4/(x−4y+7))  3x−12y+21−4x^2 +16xy−28x=8x−4y−20  4x^2 −16xy+33x+8y−41=0   ...(iv)  x^2 +2y^2 −xy−5x−7y−30=0   ...(iii)  we get from (iii) and (iv) following  solution points (numerically):  (x,y)=(−3.5386, 1.6666) ⇒F=42.3256  (x,y)=(0.1194, 6.0763) ⇒F=23.9755  (x,y)=(11.3374, 4.8863) ⇒F=242.6063  (x,y)=(0.7960, −2.5756) ⇒F=−11.4232  ⇒f_(min) =−11.4232  ⇒f_(max) =242.6063
===Generalwaytosolve===itistofindtheminimumandmaximumofthefunctionF(x,y)=2x23x+4yundertheconditionthatG(x,y)=x2+2y2xy5x7y30=0UsingLagrangemultipliermethodL(x,y)=2x23x+4y+λ(x2+2y2xy5x7y30)Lx=4x3+λ(2xy5)=0(i)Ly=4+λ(4yx7)=0(ii)Lλ=x2+2y2xy5x7y30=0(iii)from(i)and(ii):34x2xy5=4x4y+73x12y+214x2+16xy28x=8x4y204x216xy+33x+8y41=0(iv)x2+2y2xy5x7y30=0(iii)wegetfrom(iii)and(iv)followingsolutionpoints(numerically):(x,y)=(3.5386,1.6666)F=42.3256(x,y)=(0.1194,6.0763)F=23.9755(x,y)=(11.3374,4.8863)F=242.6063(x,y)=(0.7960,2.5756)F=11.4232fmin=11.4232fmax=242.6063
Commented by john santu last updated on 25/Jan/20
i have done it like this, but it  was contrained by the numerical  method
ihavedoneitlikethis,butitwascontrainedbythenumericalmethod
Answered by mr W last updated on 27/Jan/20
=== An other way to solve ===  x^2 −(y+5)x+2y^2 −7y−30=0  Δ=(y+5)^2 −4(2y^2 −7y−30)≥0  ⇒7y^2 −38y−145≤0  y_(1,2) =((19±4(√(86)))/7)  ⇒((19−4(√(86)))/7)≤y≤((19+4(√(86)))/7)  ⇒y_m =((19)/7)  2y^2 −(x+7)y+x^2 −5x−30=0  Δ=(x+7)^2 −8(x^2 −5x−30)≥0  ⇒7x^2 −54x−289≥0  x_(1,2) =((27±8(√(43)))/7)  ⇒((27−8(√(43)))/7)≤x≤((27+8(√(43)))/7)  ⇒x_m =((27)/7)  ⇒the points lie on an ellipse with  center at (((27)/7),((19)/7))  let x=u+((27)/7), y=v+((19)/7)  (u+((27)/7))^2 −(v+((54)/7))(u+((27)/7))+(2v−((11)/7))(v+((19)/7))−30=0  ⇒u^2 −uv+2v^2 −((344)/7)=0  let u=r cos ϕ, v=r sin ϕ  r^2 cos^2  ϕ−r^2  cos ϕ sin ϕ+2r^2 sin^2  ϕ−((344)/7)=0  ⇒r^2 =((688)/(7[3−(√2)cos (2ϕ−(π/4))]))  ⇒r=(4/7)(√((301)/(3−(√2)cos (2ϕ−(π/4)))))  ⇒a=r_(max) =(4/7)(√((301)/(3−(√2))))=((4(√(129+43(√2))))/7)  ⇒b=r_(min) =(4/7)(√((301)/(3+(√2))))=((4(√(129−43(√2))))/7)  x=x_m +r cos ϕ=((27)/7)+((4 cos ϕ)/7) (√((301)/(3−(√2)cos (2ϕ−(π/4)))))  y=y_m +r sin ϕ=((19)/7)+((4 sin ϕ)/7) (√((301)/(3−(√2)cos (2ϕ−(π/4)))))  f=2x^2 −3x+4y=f(ϕ)  (df/dϕ)=(4x−3)(dx/dϕ)+4(dy/dϕ)=0  ......  ⇒f_(max) ≈242.6081  ⇒f_(min) ≈−11.4231
===Anotherwaytosolve===x2(y+5)x+2y27y30=0Δ=(y+5)24(2y27y30)07y238y1450y1,2=19±4867194867y19+4867ym=1972y2(x+7)y+x25x30=0Δ=(x+7)28(x25x30)07x254x2890x1,2=27±8437278437x27+8437xm=277thepointslieonanellipsewithcenterat(277,197)letx=u+277,y=v+197(u+277)2(v+547)(u+277)+(2v117)(v+197)30=0u2uv+2v23447=0letu=rcosφ,v=rsinφr2cos2φr2cosφsinφ+2r2sin2φ3447=0r2=6887[32cos(2φπ4)]r=4730132cos(2φπ4)a=rmax=4730132=4129+4327b=rmin=473013+2=41294327x=xm+rcosφ=277+4cosφ730132cos(2φπ4)y=ym+rsinφ=197+4sinφ730132cos(2φπ4)f=2x23x+4y=f(φ)dfdφ=(4x3)dxdφ+4dydφ=0fmax242.6081fmin11.4231
Commented by mr W last updated on 26/Jan/20

Leave a Reply

Your email address will not be published. Required fields are marked *