Question Number 79417 by mr W last updated on 25/Jan/20
$${For}\:{x},{y}\in\mathbb{R}\:{find}\:{the}\:{minimum}\:{and} \\ $$$${maximum}\:{of}\:\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{4}{y} \\ $$$${if}\:{x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} −{xy}−\mathrm{5}{x}−\mathrm{7}{y}−\mathrm{30}=\mathrm{0}. \\ $$
Commented by john santu last updated on 25/Jan/20
$${what}\:{the}\:{answer}? \\ $$
Commented by mr W last updated on 25/Jan/20
$${it}'{s}\:{not}\:{worked}\:{out}\:{yet}.\:{i}\:{have}\:{only} \\ $$$${an}\:{idea},\:{maybe}\:{not}\:{a}\:{good}\:{one}. \\ $$$${basically}\:{i}\:{wanted}\:{to}\:{know}\:{which} \\ $$$${methods}\:{we}\:{can}\:{apply}\:{to}\:{solve}.\:{what}'{s} \\ $$$${your}\:{suggestion}\:{sir}? \\ $$
Commented by john santu last updated on 25/Jan/20
$${yes}\:{sir},\:{I}\:{also}\:{haven}'{t}\:{solved} \\ $$$${it}\:{yet}.\:{with}\:{the}\:{Lagrange}\: \\ $$$${multiplier}\:{method},\:{i}\:{can}'{t}\:{yet} \\ $$
Answered by mr W last updated on 26/Jan/20
$$===\:{General}\:{way}\:{to}\:{solve}\:\:=== \\ $$$${it}\:{is}\:{to}\:{find}\:{the}\:{minimum}\:{and} \\ $$$${maximum}\:{of}\:{the}\:{function}\: \\ $$$${F}\left({x},{y}\right)=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{4}{y} \\ $$$${under}\:{the}\:{condition}\:{that} \\ $$$${G}\left({x},{y}\right)={x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} −{xy}−\mathrm{5}{x}−\mathrm{7}{y}−\mathrm{30}=\mathrm{0} \\ $$$${Using}\:{Lagrange}\:{multiplier}\:{method} \\ $$$${L}\left({x},{y}\right)=\:\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{4}{y}+\lambda\left({x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} −{xy}−\mathrm{5}{x}−\mathrm{7}{y}−\mathrm{30}\right) \\ $$$$\frac{\partial{L}}{\partial{x}}=\mathrm{4}{x}−\mathrm{3}+\lambda\left(\mathrm{2}{x}−{y}−\mathrm{5}\right)=\mathrm{0}\:\:\:\:…\left({i}\right) \\ $$$$\frac{\partial{L}}{\partial{y}}=\mathrm{4}+\lambda\left(\mathrm{4}{y}−{x}−\mathrm{7}\right)=\mathrm{0}\:\:\:…\left({ii}\right) \\ $$$$\frac{\partial{L}}{\partial\lambda}={x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} −{xy}−\mathrm{5}{x}−\mathrm{7}{y}−\mathrm{30}=\mathrm{0}\:\:\:…\left({iii}\right) \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right): \\ $$$$\frac{\mathrm{3}−\mathrm{4}{x}}{\mathrm{2}{x}−{y}−\mathrm{5}}=\frac{\mathrm{4}}{{x}−\mathrm{4}{y}+\mathrm{7}} \\ $$$$\mathrm{3}{x}−\mathrm{12}{y}+\mathrm{21}−\mathrm{4}{x}^{\mathrm{2}} +\mathrm{16}{xy}−\mathrm{28}{x}=\mathrm{8}{x}−\mathrm{4}{y}−\mathrm{20} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} −\mathrm{16}{xy}+\mathrm{33}{x}+\mathrm{8}{y}−\mathrm{41}=\mathrm{0}\:\:\:…\left({iv}\right) \\ $$$${x}^{\mathrm{2}} +\mathrm{2}{y}^{\mathrm{2}} −{xy}−\mathrm{5}{x}−\mathrm{7}{y}−\mathrm{30}=\mathrm{0}\:\:\:…\left({iii}\right) \\ $$$${we}\:{get}\:{from}\:\left({iii}\right)\:{and}\:\left({iv}\right)\:{following} \\ $$$${solution}\:{points}\:\left({numerically}\right): \\ $$$$\left({x},{y}\right)=\left(−\mathrm{3}.\mathrm{5386},\:\mathrm{1}.\mathrm{6666}\right)\:\Rightarrow{F}=\mathrm{42}.\mathrm{3256} \\ $$$$\left({x},{y}\right)=\left(\mathrm{0}.\mathrm{1194},\:\mathrm{6}.\mathrm{0763}\right)\:\Rightarrow{F}=\mathrm{23}.\mathrm{9755} \\ $$$$\left({x},{y}\right)=\left(\mathrm{11}.\mathrm{3374},\:\mathrm{4}.\mathrm{8863}\right)\:\Rightarrow{F}=\mathrm{242}.\mathrm{6063} \\ $$$$\left({x},{y}\right)=\left(\mathrm{0}.\mathrm{7960},\:−\mathrm{2}.\mathrm{5756}\right)\:\Rightarrow{F}=−\mathrm{11}.\mathrm{4232} \\ $$$$\Rightarrow{f}_{{min}} =−\mathrm{11}.\mathrm{4232} \\ $$$$\Rightarrow{f}_{{max}} =\mathrm{242}.\mathrm{6063} \\ $$
Commented by john santu last updated on 25/Jan/20
$${i}\:{have}\:{done}\:{it}\:{like}\:{this},\:{but}\:{it} \\ $$$${was}\:{contrained}\:{by}\:{the}\:{numerical} \\ $$$${method} \\ $$
Answered by mr W last updated on 27/Jan/20
$$===\:{An}\:{other}\:{way}\:{to}\:{solve}\:=== \\ $$$${x}^{\mathrm{2}} −\left({y}+\mathrm{5}\right){x}+\mathrm{2}{y}^{\mathrm{2}} −\mathrm{7}{y}−\mathrm{30}=\mathrm{0} \\ $$$$\Delta=\left({y}+\mathrm{5}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{2}{y}^{\mathrm{2}} −\mathrm{7}{y}−\mathrm{30}\right)\geqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{7}{y}^{\mathrm{2}} −\mathrm{38}{y}−\mathrm{145}\leqslant\mathrm{0} \\ $$$${y}_{\mathrm{1},\mathrm{2}} =\frac{\mathrm{19}\pm\mathrm{4}\sqrt{\mathrm{86}}}{\mathrm{7}} \\ $$$$\Rightarrow\frac{\mathrm{19}−\mathrm{4}\sqrt{\mathrm{86}}}{\mathrm{7}}\leqslant{y}\leqslant\frac{\mathrm{19}+\mathrm{4}\sqrt{\mathrm{86}}}{\mathrm{7}} \\ $$$$\Rightarrow{y}_{{m}} =\frac{\mathrm{19}}{\mathrm{7}} \\ $$$$\mathrm{2}{y}^{\mathrm{2}} −\left({x}+\mathrm{7}\right){y}+{x}^{\mathrm{2}} −\mathrm{5}{x}−\mathrm{30}=\mathrm{0} \\ $$$$\Delta=\left({x}+\mathrm{7}\right)^{\mathrm{2}} −\mathrm{8}\left({x}^{\mathrm{2}} −\mathrm{5}{x}−\mathrm{30}\right)\geqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{7}{x}^{\mathrm{2}} −\mathrm{54}{x}−\mathrm{289}\geqslant\mathrm{0} \\ $$$${x}_{\mathrm{1},\mathrm{2}} =\frac{\mathrm{27}\pm\mathrm{8}\sqrt{\mathrm{43}}}{\mathrm{7}} \\ $$$$\Rightarrow\frac{\mathrm{27}−\mathrm{8}\sqrt{\mathrm{43}}}{\mathrm{7}}\leqslant{x}\leqslant\frac{\mathrm{27}+\mathrm{8}\sqrt{\mathrm{43}}}{\mathrm{7}} \\ $$$$\Rightarrow{x}_{{m}} =\frac{\mathrm{27}}{\mathrm{7}} \\ $$$$\Rightarrow{the}\:{points}\:{lie}\:{on}\:{an}\:{ellipse}\:{with} \\ $$$${center}\:{at}\:\left(\frac{\mathrm{27}}{\mathrm{7}},\frac{\mathrm{19}}{\mathrm{7}}\right) \\ $$$${let}\:{x}={u}+\frac{\mathrm{27}}{\mathrm{7}},\:{y}={v}+\frac{\mathrm{19}}{\mathrm{7}} \\ $$$$\left({u}+\frac{\mathrm{27}}{\mathrm{7}}\right)^{\mathrm{2}} −\left({v}+\frac{\mathrm{54}}{\mathrm{7}}\right)\left({u}+\frac{\mathrm{27}}{\mathrm{7}}\right)+\left(\mathrm{2}{v}−\frac{\mathrm{11}}{\mathrm{7}}\right)\left({v}+\frac{\mathrm{19}}{\mathrm{7}}\right)−\mathrm{30}=\mathrm{0} \\ $$$$\Rightarrow{u}^{\mathrm{2}} −{uv}+\mathrm{2}{v}^{\mathrm{2}} −\frac{\mathrm{344}}{\mathrm{7}}=\mathrm{0} \\ $$$${let}\:{u}={r}\:\mathrm{cos}\:\varphi,\:{v}={r}\:\mathrm{sin}\:\varphi \\ $$$${r}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\varphi−{r}^{\mathrm{2}} \:\mathrm{cos}\:\varphi\:\mathrm{sin}\:\varphi+\mathrm{2}{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\varphi−\frac{\mathrm{344}}{\mathrm{7}}=\mathrm{0} \\ $$$$\Rightarrow{r}^{\mathrm{2}} =\frac{\mathrm{688}}{\mathrm{7}\left[\mathrm{3}−\sqrt{\mathrm{2}}\mathrm{cos}\:\left(\mathrm{2}\varphi−\frac{\pi}{\mathrm{4}}\right)\right]} \\ $$$$\Rightarrow{r}=\frac{\mathrm{4}}{\mathrm{7}}\sqrt{\frac{\mathrm{301}}{\mathrm{3}−\sqrt{\mathrm{2}}\mathrm{cos}\:\left(\mathrm{2}\varphi−\frac{\pi}{\mathrm{4}}\right)}} \\ $$$$\Rightarrow{a}={r}_{{max}} =\frac{\mathrm{4}}{\mathrm{7}}\sqrt{\frac{\mathrm{301}}{\mathrm{3}−\sqrt{\mathrm{2}}}}=\frac{\mathrm{4}\sqrt{\mathrm{129}+\mathrm{43}\sqrt{\mathrm{2}}}}{\mathrm{7}} \\ $$$$\Rightarrow{b}={r}_{{min}} =\frac{\mathrm{4}}{\mathrm{7}}\sqrt{\frac{\mathrm{301}}{\mathrm{3}+\sqrt{\mathrm{2}}}}=\frac{\mathrm{4}\sqrt{\mathrm{129}−\mathrm{43}\sqrt{\mathrm{2}}}}{\mathrm{7}} \\ $$$${x}={x}_{{m}} +{r}\:\mathrm{cos}\:\varphi=\frac{\mathrm{27}}{\mathrm{7}}+\frac{\mathrm{4}\:\mathrm{cos}\:\varphi}{\mathrm{7}}\:\sqrt{\frac{\mathrm{301}}{\mathrm{3}−\sqrt{\mathrm{2}}\mathrm{cos}\:\left(\mathrm{2}\varphi−\frac{\pi}{\mathrm{4}}\right)}} \\ $$$${y}={y}_{{m}} +{r}\:\mathrm{sin}\:\varphi=\frac{\mathrm{19}}{\mathrm{7}}+\frac{\mathrm{4}\:\mathrm{sin}\:\varphi}{\mathrm{7}}\:\sqrt{\frac{\mathrm{301}}{\mathrm{3}−\sqrt{\mathrm{2}}\mathrm{cos}\:\left(\mathrm{2}\varphi−\frac{\pi}{\mathrm{4}}\right)}} \\ $$$${f}=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{3}{x}+\mathrm{4}{y}={f}\left(\varphi\right) \\ $$$$\frac{{df}}{{d}\varphi}=\left(\mathrm{4}{x}−\mathrm{3}\right)\frac{{dx}}{{d}\varphi}+\mathrm{4}\frac{{dy}}{{d}\varphi}=\mathrm{0} \\ $$$$…… \\ $$$$\Rightarrow{f}_{{max}} \approx\mathrm{242}.\mathrm{6081} \\ $$$$\Rightarrow{f}_{{min}} \approx−\mathrm{11}.\mathrm{4231} \\ $$
Commented by mr W last updated on 26/Jan/20