Question Number 79417 by mr W last updated on 25/Jan/20

Commented by john santu last updated on 25/Jan/20

Commented by mr W last updated on 25/Jan/20

Commented by john santu last updated on 25/Jan/20

Answered by mr W last updated on 26/Jan/20

Commented by john santu last updated on 25/Jan/20

Answered by mr W last updated on 27/Jan/20
![=== An other way to solve === x^2 −(y+5)x+2y^2 −7y−30=0 Δ=(y+5)^2 −4(2y^2 −7y−30)≥0 ⇒7y^2 −38y−145≤0 y_(1,2) =((19±4(√(86)))/7) ⇒((19−4(√(86)))/7)≤y≤((19+4(√(86)))/7) ⇒y_m =((19)/7) 2y^2 −(x+7)y+x^2 −5x−30=0 Δ=(x+7)^2 −8(x^2 −5x−30)≥0 ⇒7x^2 −54x−289≥0 x_(1,2) =((27±8(√(43)))/7) ⇒((27−8(√(43)))/7)≤x≤((27+8(√(43)))/7) ⇒x_m =((27)/7) ⇒the points lie on an ellipse with center at (((27)/7),((19)/7)) let x=u+((27)/7), y=v+((19)/7) (u+((27)/7))^2 −(v+((54)/7))(u+((27)/7))+(2v−((11)/7))(v+((19)/7))−30=0 ⇒u^2 −uv+2v^2 −((344)/7)=0 let u=r cos ϕ, v=r sin ϕ r^2 cos^2 ϕ−r^2 cos ϕ sin ϕ+2r^2 sin^2 ϕ−((344)/7)=0 ⇒r^2 =((688)/(7[3−(√2)cos (2ϕ−(π/4))])) ⇒r=(4/7)(√((301)/(3−(√2)cos (2ϕ−(π/4))))) ⇒a=r_(max) =(4/7)(√((301)/(3−(√2))))=((4(√(129+43(√2))))/7) ⇒b=r_(min) =(4/7)(√((301)/(3+(√2))))=((4(√(129−43(√2))))/7) x=x_m +r cos ϕ=((27)/7)+((4 cos ϕ)/7) (√((301)/(3−(√2)cos (2ϕ−(π/4))))) y=y_m +r sin ϕ=((19)/7)+((4 sin ϕ)/7) (√((301)/(3−(√2)cos (2ϕ−(π/4))))) f=2x^2 −3x+4y=f(ϕ) (df/dϕ)=(4x−3)(dx/dϕ)+4(dy/dϕ)=0 ...... ⇒f_(max) ≈242.6081 ⇒f_(min) ≈−11.4231](https://www.tinkutara.com/question/Q79614.png)
Commented by mr W last updated on 26/Jan/20
