Menu Close

for-z-1-1-show-that-tan-arg-z-1-2-2i-z-1-




Question Number 87302 by M±th+et£s last updated on 03/Apr/20
for ∣z−1∣=1 show that  tan(((arg(z−1))/2))−((2i)/z)=−1
forz1∣=1showthattan(arg(z1)2)2iz=1
Commented by MJS last updated on 04/Apr/20
tan ((arg (z−1))/2) ∈R  −((2i)/z)∉R ∀ z=a+bi; a≠0  ⇒ generally lhs∉R but rhs=−1∈R the       equation is wrong    ∣z−1∣=1 is a circle:  z=a+bi  ∣a−1+bi∣=1 ⇔ (√((a−1)^2 +b^2 ))=1 ⇔ b=±(√(2a−a^2 ))  ⇒ generally z=a+bi; a≠0
tanarg(z1)2R2izRz=a+bi;a0generallylhsRbutrhs=1Rtheequationiswrongz1∣=1isacircle:z=a+bia1+bi∣=1(a1)2+b2=1b=±2aa2generallyz=a+bi;a0
Commented by M±th+et£s last updated on 04/Apr/20
thank you sir   tan(((arg(z−1))/2)−((2i)/z))=−i
thankyousirtan(arg(z1)22iz)=i
Commented by M±th+et£s last updated on 04/Apr/20
z−1=e^(iθ)   z=1+cosθ+i sinθ  z=2cos^2 (θ/2)+2cos(θ/2) sin(θ/2)  z=2cos(θ/2)(cos(θ/2)+i sin(θ/2))  z=2 cos(θ/2) e^(i(θ/2))   ∴tan(((arg(z−1))/2)−((2i)/z))  =tan(θ/2) − (i/(cos(θ/2))) e^(−i (θ/2))   =tan(θ/2)−i(((cos(θ/2)−i sin(θ/2)))/(cos(θ/2)))  =((sin(θ/2)−icos(θ/2)−sin(θ/2) )/(cos(θ/2)))=−i
z1=eiθz=1+cosθ+isinθz=2cos2θ2+2cosθ2sinθ2z=2cosθ2(cosθ2+isinθ2)z=2cosθ2eiθ2tan(arg(z1)22iz)=tanθ2icosθ2eiθ2=tanθ2i(cosθ2isinθ2)cosθ2=sinθ2icosθ2sinθ2cosθ2=i
Answered by MJS last updated on 04/Apr/20
let Z=z−1  ∣Z∣=1 ⇒ Z=cos θ +i sin θ  tan ((arg Z)/2) =−i+((2i)/(Z+1))  tan (θ/2) =−i+((2i)/(1+cos θ +i sin θ))  tan (θ/2)=−i+((2i(1+cos θ −i sin θ))/((1+cos θ)^2 +sin^2  θ))  tan (θ/2) =−i+((2sin θ +2(1+cos θ)i)/(2+2cos θ))  tan (θ/2)=−i+((sin θ)/(1+cos θ))+i  tan (θ/2) =((sin θ)/(1+cos θ)) this is a well known formula  true!
letZ=z1Z∣=1Z=cosθ+isinθtanargZ2=i+2iZ+1tanθ2=i+2i1+cosθ+isinθtanθ2=i+2i(1+cosθisinθ)(1+cosθ)2+sin2θtanθ2=i+2sinθ+2(1+cosθ)i2+2cosθtanθ2=i+sinθ1+cosθ+itanθ2=sinθ1+cosθthisisawellknownformulatrue!
Commented by M±th+et£s last updated on 04/Apr/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *